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Sustained periods of over-optimism that eventually end in a crash are at the heart

of many macro-economic events, such as stock market bubbles, house price bubbles,

investment booms, credit cycles, or financial crises (Mackay 1841, Bagehot 1873, Gal-

braith 1954, Kindleberger 1978, Shiller 2000, Jordà et al. 2015, Greenwood et al. 2021).

Given the real consequences of bubbles and crashes, there has been widespread interest

in understanding their anatomy and the beliefs that support them.

In terms of anatomy, Kindleberger (1978)’s historical narrative of bubbles provides

us with some guidance, by identifying three key stages of bubbles and crashes. The first

stage is characterized by what Kindleberger refers to as a displacement, “some outside

event that changes horizons, expectations, anticipated profit opportunities, behavior.”

Examples include technological revolutions, such as the railroads in the 1840s, the radio

and automobiles in the 1920s, and the internet in the 1990s, or financial innovations such

as securitization prior to the 2008 financial crisis. The second stage is characterized by

euphoria and acceleration. As investors respond to such shocks, the good news leads to

a wave of optimism and rising prices. This in turn encourages further buying in a self-

sustaining feedback between prices and beliefs that decouples prices from fundamentals.

More recent empirical evidence has also shown that this stage is also associated with

destabilizing speculation (De Long et al. 1990, Brunnermeier and Nagel 2004), accel-

erating and convex price paths (Greenwood et al. 2019), and heavy trading (Ofek and

Richardson 2003, Hong and Stein 2007, Barberis 2018, DeFusco et al. 2020). Eventually,

in the third stage of the bubble, agents who rode the bubble exit, leading to a crash.

Turning to beliefs, early theories of bubbles maintain the assumption of rational

expectations (Blanchard and Watson 1982, Tirole 1985, Martin and Ventura 2012).

However, as well as being at odds with empirical evidence on prices (Giglio et al. 2016),

these theories are also unable to speak to the pervasive empirical and experimental

evidence on extrapolative beliefs (Smith et al. 1988, Haruvy et al. 2007, Case et al.

2012, Greenwood and Shleifer 2014). Behavioral theories have instead turned to over-

confidence and short-sale constraints (Harrison and Kreps 1978, Scheinkman and Xiong
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2003),1 and more recently to modeling extrapolative expectations themselves (Cutler

et al. 1990, De Long et al. 1990, Hong and Stein 1999, Glaeser and Nathanson 2017,

Barberis et al. 2018, Bordalo et al. 2021, Liao et al. 2021, Chodorow-Reich et al. 2021).2

Following a sequence of positive news, investors extrapolate recent price rises, and be-

come more optimistic. This then translates into even higher prices, and even more

optimistic future beliefs. By directly modeling the self-sustaining feedback between out-

comes and beliefs that is characteristic of bubbles, these models generate many features

of the Kindleberger (1978) narrative.3

At the same time, the reduced form nature of extrapolation considered in these

theories leaves several questions open. First, what are the foundations of extrapolative

expectations, and what determines how strongly traders extrapolate price changes in

updating their future beliefs? Second, why is it that “[b]y no means does every upswing

in business excess lead inevitably to mania and panic” (Kindleberger 1978)? In other

words, why is it that the same type of extrapolative beliefs sometimes leads prices and

beliefs to become extreme and decoupled from fundamentals, while in normal times we

don’t observe such extreme responses to shocks?

To answer these questions we first provide a micro-foundation for the degree of price

extrapolation with a theory of “Partial Equilibrium Thinking” (PET) (Bastianello and

Fontanier 2021) in which traders fail to realize the general equilibrium consequences of

their actions when learning information from prices. Second, consistent with the Kindle-

berger narrative, we draw a distinction between normal times shocks and displacement

shocks, and show that while partial equilibrium thinking leads to constant price extrap-

olation in normal times, it leads to stronger and time-varying extrapolation following a

displacement.

Micro-founding the degree of extrapolation in this way provides a unifying theory
1There is also a literature on coarse reasoning in financial markets (e.g. Bianchi and Jehiel 2010,

Eyster and Piccione 2013). Unlike these papers, our mechanism can deliver sustained periods of over-
pricing without relying on short-sale constraints.

2See also Barberis et al. (2015), Hirshleifer et al. (2015), Jin and Sui (2022), and Nagel and Xu
(2022) for models of extrapolative expectations that address other asset pricing anomalies.

3See Brunnermeier and Oehmke (2013), Xiong (2013) and Barberis (2018) for exhaustive surveys
on bubbles and crashes, and Hirshleifer (2015) for a broader survey on behavioral finance.
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in which the two-way feedback between prices and beliefs is present at all times, but

only manifests itself in explosive ways under very specific circumstances. According

to Soros (2015): “[...] in most situations [the two-way feedback] is so feeble that it

can safely be ignored. We may distinguish between near-equilibrium conditions where

certain corrective mechanisms prevent perceptions and reality from drifting too far apart,

and far-from equilibrium conditions where a reflexive double-feedback mechanism is at

work and there is no tendency for perceptions and reality to come closer together [...].”

We formalize this notion of “near-equilibrium” and “far-from equilibrium” conditions

by modeling the distinction between normal times shocks which do not generate large

changes to the environment, and Kindleberger-type displacements which instead do.

To illustrate our notion of partial equilibrium thinking, consider some investors who

see the price of a stock rise, but do not know what caused this. They may think that

some other more informed investors in the market received positive news about this stock

and decided to buy, pushing up its price. Given this thought process, they infer positive

news about it, and also buy, leading to a further price increase. At this point, rational

agents perfectly understand that this additional price rise is not due to further good

news, but simply reflects the lagged response of uninformed agents who are thinking

and behaving just like them. As a result, they no longer update their beliefs in response

to this second price rise, and the two-way feedback between prices and beliefs fails to

materialize, as shown in the top panel of Figure 1.

However, for uninformed agents to learn the right information from prices, they must

perfectly understand what generates the price changes they observe at each point in time,

which in turn requires them to perfectly understand all other agents’ actions and beliefs.

Theories of rational expectations model this level of understanding by assuming com-

mon knowledge of rationality, which has been widely rejected by experimental evidence

(Crawford et al. 2013, Kübler and Weizsäcker 2004, Penczynski 2017, Eyster et al. 2018).

We relax this assumption by instead assuming that agents think in partial equilibrium,

whereby “otherwise rational expectations fail to take into account the strength of similar

responses by others” (Kindleberger 1978). PET agents neglect that all other uninformed
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agents are thinking and behaving just like them, and attribute any price change they

observe to new information alone. Following the second price rise in the example in

Figure 1, PET agents attribute it to further good news, encouraging further buying and

inducing further price rises in a self-sustaining feedback between prices and beliefs. In

this paper we formalize the intuition behind this example and show how, depending on

the information structure, the strength of this feedback effect may be time-varying.

Figure 1: The Feedback-Loop Theory of Bubbles. Changes in prices and beliefs after a one-off
shock to fundamentals, under rational expectations (top panel) and under partial equilibrium thinking
(bottom panel).

REE: ∆EI,1 =⇒ ∆P1 =⇒ ∆EU,2 =⇒ ∆P2

∆Pt+1∆EU,t+1PET: ∆EI,1 =⇒ ∆P1 =⇒ ∆EU,2 =⇒ ∆P2 =⇒

This notion of partial equilibrium thinking builds on a vast literature in social learn-

ing that has documented agents’ tendency to neglect the extent to which other agents

infer information from aggregate outcomes (Kübler and Weizsäcker 2004, Penczynski

2017, Eyster et al. 2018, Enke and Zimmermann 2019),4 and has studied this type of

bias in the form of correlation neglect, näıve herding, cursedness, and k-level thinking

(DeMarzo et al. 2003, Eyster and Rabin 2005, Eyster and Rabin 2010).5,6 We contribute

to this literature in two ways. First, we introduce this type of bias in a general equi-

librium environment, where prices don’t only have a purely informational role, but they

also have a market feedback effect role, as they act as a measure of scarcity. Second, by
4More recently, Liu et al. (2021) find that a perceived information advantage is one of the dominant

trading motives among retail traders in China.
5See also Bohren (2016), Esponda and Pouzo (2016), Gagnon-Bartsch and Rabin (2016), Fudenberg

et al. (2017), Bohren and Hauser (2021), Frick et al. (2020), Fudenberg et al. (2021), Gagnon-Bartsch
et al. (2021) among others for theoretical studies of misinference in social learning contexts.

6While one can think of partial equilibrium thinking as being an example of level-2 thinking, we
differ from models of K−level thinking that do not involve an inference problem from equilibrium
outcomes (e.g. Angeletos and Lian (2017), Farhi and Werning (2019), among others), an ingredient
which instead lies at the heart of our two-way feedback effect between outcomes and beliefs. We also
differ from models that study the implications of higher order beliefs in a fully rational model (e.g.
Allen et al. 2006).
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drawing a distinction between normal times and displacement shocks, we study how the

latter introduce time-variation in the relative strength of the informational and scarcity

roles of prices, and show how this allows for reversals even after periods where outcomes

and beliefs have become extreme and decoupled from fundamentals.

We begin by introducing partial equilibrium thinking into a standard infinite horizon

model of a financial market where each period a continuum of investors solve a portfolio

choice problem between a risky and a riskless asset. Our agents differ in their ability to

observe fundamental news: a fraction of agents are informed and observe fundamental

shocks, and the remaining fraction of agents are uninformed and instead infer information

from prices. Motivated by empirical and experimental evidence that traders extrapolate

trends as opposed to instantaneous price movements (Andreassen and Kraus 1990, Case

et al. 2012), we assume that traders learn information from past as opposed to current

prices as in De Long et al. (1990), Hong and Stein (2007) and Barberis et al. (2018).7

Given this information structure, in each period price changes reflect both the con-

temporaneous response of informed agents to news, and the lagged response of unin-

formed agents who learn from past prices. However, when uninformed agents think in

partial equilibrium, they neglect the second source of variation and attribute any price

change to new information alone, leading to a simple type of price extrapolation.

The key prediction of the model which leads to different dynamics in response to

different types of shocks is that the degree of extrapolation and the bias that partial

equilibrium thinking generates are decreasing in informed traders’ informational edge.

This edge is simply defined as the aggregate confidence of informed traders relative to the

aggregate confidence of uninformed traders, and is higher when there are more informed

traders in the market, and when the precision of the additional information informed

traders hold is higher. When this informational edge is high, informed traders trade

more aggressively, and the influence on prices of uninformed traders’ beliefs is lower.

This leads partial equilibrium thinkers to neglect a smaller source of price variation,

7This assumption allows us to model the evolution of the two-way feedback between outcomes and
beliefs dynamically. Bastianello and Fontanier (2021) explores the implications of partial equilibrium
thinking and more general types of model misspecification in a static framework.
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therefore leading to a smaller bias and a smaller strength of the feedback between prices

and beliefs. Conversely, when informed traders’ edge is low, partial equilibrium thinkers

neglect a bigger source of price variation, leading to a larger bias and a stronger feedback

effect. By understanding how this edge varies in response to different types of shocks,

we can then understand how partial equilibrium thinking generates different dynamics

in normal times, and following a displacement.

We show that in normal times informed agents’ edge is constant over time. For exam-

ple, normal times shocks may come in the form of earnings announcements: sophisticated

traders are better able to understand the long run implications of such shocks, and un-

informed retail traders can learn about them more slowly by observing how the market

reacts to such news. When this is the case, informed traders are always one step ahead

of uninformed traders, and their edge is high and constant, meaning that partial equilib-

rium thinkers neglect a small source of price variation, thus leading to weak departures

from rationality, as when Soros’ notion of “near equilibrium” conditions are satisfied.

This is no longer true following a Kindleberger-type displacement, when the informa-

tional edge becomes time-varying. Specifically, displacements are “something new under

the sun,” and the implications of such shocks for long term outcomes can be learnt only

gradually over time. These shocks wipe out much of informed agents’ edge as not even

the most informed of informed agents are able to immediately grasp the full long-term

implications of such events. This leads informed agents to trade less aggressively, and

to a rise in the influence on prices of uninformed traders’ beliefs. Partial equilibrium

thinkers then neglect a greater source of price variation, leading to a stronger bias. This

fuels the strength of the feedback between prices and beliefs, allowing both to accelerate

away from fundamentals, as “far-from equilibrium” conditions take over in determin-

ing equilibrium dynamics. As informed traders learn more about the displacement over

time, they regain their edge, leading to a gradual fall in the degree of extrapolation, and

in the strength of the feedback effect. When the feedback effect runs out of steam, the

bubble bursts, and prices and beliefs converge back towards fundamentals. The exact

shape of the bubble then depends on the speed with which informed traders learn more
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about the displacement over time.

Relative to earlier micro-foundations of price extrapolation (Hong and Stein 1999,

Malmendier and Nagel 2011, Fuster et al. 2012, Glaeser and Nathanson 2017, Green-

wood and Hanson 2015), this paper draws a distinction between normal times shocks

and displacement shocks, and focuses on the endogenous time-variation in extrapolative

beliefs. Unlike previous papers, we are then able to exploit the properties of unstable

and non-stationary regions, as displacements make the transition to such regions only

temporary. This allows us to offer an explanation for why not every large positive shock

leads to bubbles and crashes, in a way that is consistent with both historical narratives

and more recent empirical evidence (Kindleberger 1978, Greenwood et al. 2019).

Finally, we study how our bias interacts with speculative motives, and show that

whether speculators amplify bubbles or arbitrage them away depends on their beliefs

of whether mispricing is temporary or predictable. If they think that mispricing is

temporary, they arbitrage it away immediately, and bubbles and crashes do not arise. If

instead they realize that future mispricing is predictable and that they will be able to sell

the asset to “a greater fool” at a higher price in the future, they increase their position in

the asset, thus pushing prices up further, and amplifying the bubble. These predictions

are consistent with bubbles being associated with the type of destabilizing speculation

described in the latter case (Keynes 1936), and with more sophisticated traders initially

riding the bubble (Brunnermeier and Nagel 2004, Temin and Voth 2004, Griffin et al.

2011, An et al. 2022).

This paper proceeds as follows. In Section 1 we introduce our notion of partial equi-

librium thinking and study it in the context of normal times shocks. Section 2 models

displacements and shows how these shocks interact with partial equilibrium thinking in

generating bubbles and crashes. In Section 3 we add speculative motives. Section 4 con-

cludes and discusses some directions of future research. While prices are a very natural

equilibrium outcome agents may learn from, partial equilibrium thinking can be applied

more broadly to any setup where agents learn information from a general equilibrium

variable, thus lending itself to a variety of other macro and finance applications, such as
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credit cycles and investment booms.

1 Normal Times

In this section we introduce our notion of partial equilibrium thinking (PET) in normal

times, which we think of as periods where shocks come in the form of regular earning

announcements that do not cause significant changes in the composition of traders in

the market, or in the relative confidence of traders.

1.1 Setup

Agents solve a portfolio choice problem between a risk-free and a risky asset. The risk-

free asset is in zero net supply and we normalize its price and its risk-free rate to one.

The risky asset is in fixed net supply Z and pays a liquidating dividend when it dies at

an uncertain terminal date.8 In each period, with probability β the asset remains alive

and produces ut
iid∼ N(0, σ2

u) worth of terminal dividends, and with probability (1 − β)

the asset dies, and all accumulated dividends are paid out (Blanchard 1985). From the

point of view of period t, the asset is still alive in period t + h with probability βh.

Taking expectations over all possible terminal dates, the present value of the terminal

dividend in period t, conditional on realized future shocks {ut+h}∞
h=1, can be written as:9

DT = D̄ +
t∑

j=0
uj +

∞∑
h=1

βhut+h (2)

8Having the net supply of the risky asset being fixed, instead of stochastic, ensures that prices are
fully revealing (Grossman 1976). In Appendix D.2 we relax this assumption and allow for the supply
of the risky asset to be stochastic, so that prices are only partially revealing (Diamond and Verrecchia
1981). The key intuitions at the heart of partial equilibrium thinking remain unchanged.

9Notice that conditional on dying in period t+h, the realized terminal dividend evolves as a random
walk:

Dt+h = D̄ +
t+h∑
j=0

uj (1)
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where D̄ > 0 is constant and is common knowledge. Moreover, this expression simply

reflects that from the point of view of period t, the asset has produced ∑t
j=0 uj worth of

terminal dividends while alive in these first t periods, and with probability βh the asset

is still alive in period t + h, and if so it will produce an amount ut+h.

This death probability β then acts as a very natural discount rate such that dividends

paid further into the future receive a lower weight today. Introducing this uncertain

terminal date is a simple and effective modeling device that increases tractability by

serving two key purposes: it avoids horizon effects from approaching a fixed terminal

date, and it keeps variances bounded even as we allow the terminal date to be arbitrarily

far into the future.

Our economy is populated by a continuum of measure one of fundamental traders,

who have CARA utility over terminal wealth and trade as if they were going to hold the

asset until its death, even though they rebalance their portfolio every period.10 In each

period t all agents then solve the following portfolio choice problem:

max
Xi,t

{
Xi,t (Ei,t[DT ] − Pt) − 1

2AX2
i,tVi,t[DT ]

}
(3)

where Xi,t is the dollar amount that agent i invests in the risky asset in period t, A is the

coefficient of absolute risk aversion, and Ei,t[DT ] and Vi,t[DT ] refer to agent i’s posterior

mean and variance beliefs about the fundamental value of the asset conditional on their

information set in period t. The corresponding first order condition yields the following

standard demand function for the risky asset:

Xi,t = Ei,t[DT ] − Pt

AVi,t[DT ] (4)

which is increasing in agent i’s expected payoff, and decreasing in the risk they associate

10Our fundamental traders behave as if they were going to hold their position forever, even though
they rebalance every period. This ensures tractability, and allows us to explore the mechanism at the
core of partial equilibrium thinking in the simplest and most transparent way. In Section 3 we relax
this assumption and model traders who have CARA utility over next period wealth, and forecast next
period prices as opposed to long-term fundamentals. The main intuitions are unchanged.
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with holding the asset.

Turning to the information structure, we assume that a fraction ϕ of agents are

informed, and observe the fundamental shock ut, in every period. The remaining fraction

(1 − ϕ) of agents are uninformed and do not observe any of the fundamental shocks,

but can learn information from prices. Given experimental evidence by Andreassen and

Kraus (1990), we then assume that traders learn information from past as opposed to

current prices, in the spirit of the positive feedback traders in De Long et al. (1990),

Hong and Stein (1999), and Barberis et al. (2018).11

To solve the model, we proceed in three steps. First, we solve for the true price

function which generates the outcomes that agents observe. Second, we turn to PET

agents’ beliefs of what generates the prices they observe, which allows us to pin down

the mapping that PET agents use to learn information from prices. Finally, we solve

the equilibrium recursively, and study the properties of equilibrium outcomes.

1.2 True Price Function in Normal Times

To solve for the true market clearing price function, we need to specify agents’ posterior

beliefs, compute agents’ asset demand functions, and impose market clearing. Starting

from agents’ beliefs, we know that in period t all informed agents trade on the information

they receive, and update their beliefs accordingly:

EI,t[DT ] = EI,t−1[DT ] + ut (5)

VI,t[DT ] = VI,t

[ ∞∑
h=1

βhut+h

]
=
(

β2

1 − β2

)
σ2

u ≡ VI (6)

Instead, all uninformed agents learn information from past prices. Let ũt−1 be the

fundamental shock which uninformed traders learn from the past price they observe,

11Appendix D.1 shows that the main intuitions of the model still go through if we assume that
uninformed traders submit market orders that do not condition on the current price level.
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Pt−1. We can then write uninformed traders’ posterior beliefs as:

EU,t[DT ] = EU,t−1[DT ] + ũt−1 (7)

VU,t[DT ] = VI,t

[
ut +

∞∑
h=1

βhut+h

]
=
(

1
1 − β2

)
σ2

u ≡ VU (8)

More generally, throughout the paper we denote with a ·̃ uninformed traders’ beliefs

about a variable. In this case, since prices are fully revealing, uninformed traders believe

they are extracting from Pt−1 the exact fundamental shock that informed traders observe

in t − 1, so ũt−1 is uninformed agents’ beliefs of the t − 1 fundamental shock, ut−1.

Whether ũt−1 = ut−1 or ũt−1 ̸= ut−1 depends on the mapping uninformed traders use

to extract information from prices. In Sections 1.3 and 1.4 we show that if traders have

rational expectations, then ũt−1 = ut−1, but if instead they use a misspecified mapping,

as with partial equilibrium thinking, they extract biased information from prices and

ũt−1 ̸= ut−1. For now, treat ũt−1 as a generic signal uninformed traders learn from past

prices, and we derive this as an equilibrium object in the next section.

The last equality in both (8) and (6) shows that both informed and uninformed agents

face constant uncertainty over time: informed traders always face uncertainty over all

future fundamental shocks, while uninformed traders additionally face uncertainty over

the current fundamental shock, as they only learn information from past prices. Since

informed traders are always one step ahead of uninformed traders, we can define ζt to

be the aggregate informational edge of informed agents relative to uninformed agents in

period t as follows.

Definition 1 (Aggregate Informational Edge). The aggregate informational edge of in-

formed traders in period t is defined as the aggregate confidence of informed traders

relative to the aggregate confidence of uninformed traders:

ζt ≡ ϕ

(1 − ϕ)
τI,t

τU,t

(9)

where τi,t = (Vi,t)−1 is the confidence of agent i ∈ {I, U} in period t.
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This edge is increasing in the fraction of informed traders in the market (ϕ), and

in the relative individual level confidence of informed and uninformed traders (τI,t/τU,t).

Importantly, since in normal times ϕ and τI,t/τU,t are constant, the informational edge is

also constant.

Given these posterior beliefs, we can compute agents’ asset demand functions and

impose market clearing by simply equating the aggregate demand for the risky asset to

the fixed supply Z:

ϕ

(
EI,t−1[DT ] + ut − Pt

AVI

)
︸ ︷︷ ︸

XI,t

+(1 − ϕ)
(
EU,t−1[DT ] + ũt−1 − Pt

AVU

)
︸ ︷︷ ︸

XU,t

= Z (10)

The true market clearing price function is then given by:

Pt = a (EI,t−1[DT ] + ut) + b (EU,t−1[DT ] + ũt−1) − c (11)

where:12

a ≡ ϕτI

ϕτI + (1 − ϕ)τU

= ζ

1 + ζ
(12)

b ≡ (1 − ϕ)τU

ϕτI + (1 − ϕ)τU

= 1
1 + ζ

(13)

c ≡ AZ

ϕτI + (1 − ϕ)τU

(14)

so that prices reflect a weighted average of agents’ beliefs minus a risk-premium compo-

nent which compensates agents for bearing risk. The last equality in (12) and (13) then

shows that the weight on informed agents’ beliefs is increasing in their informational

edge, and the opposite comparative static holds for the weight on uninformed agents’

beliefs.

Taking first differences of the price function in (11) and of agents’ beliefs in (5) and

12The last equality in (12) and (13) is obtained by dividing the numerator and denominator by ϕτI

and (1 − ϕ)τU respectively, and using the definition of ζ in (9).
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(9), we find that:

∆Pt = aut︸︷︷︸
instantaneous response of I

to new information

+ bũt−1︸ ︷︷ ︸
lagged response of U

from learning from past prices

(15)

which shows that price changes reflect both the instantaneous response to shocks of

informed agents, and the lagged response of uninformed agents who learn information

from past prices.

To specify what information uninformed agents extract from past prices we need to

understand what uninformed agents think is generating the price changes that they ob-

serve. In what follows we first explore the inference problem under rational expectations,

and then turn to the inference problem under partial equilibrium thinking.

1.3 Rational Expectations Benchmark

If uninformed traders have rational expectations, they perfectly understand that (15)

generates the price changes they observe.13 As discussed further in Appendix B.1, they

then invert the following mapping to learn information from past price changes:14

∆Pt−1 = aũt−1︸ ︷︷ ︸
instantaneous response of I

to new information

+ bũt−2︸ ︷︷ ︸
lagged response of U

from learning from past prices

(16)

where ũt−1 is uninformed traders’ belief of the shock that hit the economy in period

t − 1 (and which they wish to infer from past prices), and ũt−2 is the signal uninformed

traders already learnt in period t − 1 (and is already in their information set).15

Inverting (16), we find that uninformed rational traders use the following mapping

13To keep this rational benchmark as close as possible to our notion of partial equilibrium thinking,
we restrict uninformed rational traders to also learn information from past prices.

14The lag on the price change reflects the fact that uninformed traders are learning information from
past as opposed to current prices, so that in period t they must understand what generated the price
in period t − 1, as this is the price they are extracting new information from.

15Moreover, because of common knowledge of rationality, rational uninformed traders are correctly
specified about ũt−2 (the signal other traders extracted from past prices in the previous period).
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to infer information from prices:

ũt−1 =
(1

a

)
∆Pt−1 − b

a
ũt−2 (17)

Lagging the true price function in (15) and substituting it into the above expression,

we see that since rational traders understand what generates the price changes they

observe, they are able to extract the right information from past prices:

ũt−1 = ut−1 (18)

However, for uninformed agents to learn the right information from prices, they must

perfectly understand what generates every single price change they observe, which in

turn requires them to perfectly understand other agents’ actions and beliefs. In what

follows, we relax this assumption.

1.4 Partial Equilibrium Thinking

When agents think in partial equilibrium, they misunderstand what generates the price

changes that they observe because they fail to realize the general equilibrium conse-

quences of their actions (Bastianello and Fontanier 2021). The way that PET manifests

itself in this setup is that all agents learn information from prices, but they fail to realize

that other agents do too. In other words, PET agents think that they are the only ones

inferring information from prices, and that all other agents trade on their unconditional

priors.16

Formally, PET agents think that in period t − 1 informed agents update their beliefs

16Our notion of partial equilibrium thinking captures how traders misunderstand the endogenous
part of the price change that comes from learning from equilibrium outcomes, even though they may
correctly understand the part of the price change that comes from informed traders directly responding
to exogenous signals.
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with the new fundamental information they receive, ũt−1:17

ẼI,t−1[DT ] = ẼI,t−2[DT ] + ũt−1 (19)

ṼI,t−1[DT ] =
(

β2

1 − β2

)
σ2

u ≡ ṼI (20)

On the other hand, they think that all other uninformed agents do not learn infor-

mation from prices, and instead trade on the same unconditional prior beliefs they held

in period t = 0:

ẼU,t−1[DT ] = ẼU,t−2[D] = D̄ (21)

ṼU,t−1[DT ] =
(

1
1 − β2

)
σ2

u ≡ ṼU (22)

where the equivalences in (20) and (22) highlight that in normal times, PET agents

understand that all agents face constant uncertainty over time. Moreover, since ṼI =

VI < ṼU = VU , we see that PET agents are not misspecified about other agents’ second

moment beliefs, and they understand that informed agents have an informational edge.

Importantly, all agents are atomistic and do not consider the effect of their own asset

demand on prices. PET agents then think that the equilibrium price in period t − 1 is

generated by the following market clearing condition:

ϕ

(
EU,t−2[DT ] + ũt−1 − Pt−1

AṼI

)
︸ ︷︷ ︸

X̃I,t−1

+(1 − ϕ)
(

D̄ − Pt−1

AṼU

)
︸ ︷︷ ︸

X̃U,t−1

= Z (23)

which leads to the following price function:

Pt−1 = ã (EU,t−2[DT ] + ũt−1) + b̃D̄ − c̃ (24)

17The use of t − 1 subscripts instead of t is to highlight that uninformed agents learn information
from past prices, so that in period t they must understand what generated the price in period t − 1, as
this is the price they are extracting new information from.
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where:

ã ≡ ϕτ̃I

ϕτ̃I + (1 − ϕ)τ̃U

= ζ̃

1 + ζ̃
(25)

b̃ ≡ (1 − ϕ)τ̃U

ϕτ̃I + (1 − ϕ)τ̃U

= 1
1 + ζ̃

(26)

c̃ ≡ AZ

ϕτ̃I + (1 − ϕ)τ̃U

(27)

Since the only source of price variation perceived by PET agents is given by changes in

informed agents’ beliefs, we can take first differences of (24) and rewrite this as:

∆Pt−1 = ãũt−1︸ ︷︷ ︸
instantaneous response of I

to new information

(28)

which shows that when agents think in partial equilibrium they attribute any price

change they observe to new information alone. They instead neglect the second source

of price variation in (16), which is due to the lagged response of all other uninformed

traders. PET agents then invert the mapping in (28) to extract ũt−1 from prices:

ũt−1 =
(1

ã

)
∆Pt−1 (29)

Therefore, PET provides a micro-foundation for extrapolative expectations as unin-

formed traders extract a positive signal and become more optimistic whenever they see

a price rise, and extract a negative signal and become more pessimistic whenever they

see a price fall. This is unlike the rational expectations benchmark in (17), where unin-

formed traders become more optimistic (pessimistic) following a price rise (fall) only if

that price change is due to new information. If the price change they observe is instead

due to the lagged response of uninformed traders who are learning information from past

prices, rational traders do not update their beliefs.

The bias inherent in partial equilibrium thinking is then increasing in the source

of price variation they neglect, which, in turn, is decreasing in informed traders’ infor-
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mational edge. Intuitively, a lower edge (from a smaller fraction of informed traders

in the market, or from a lower confidence of informed relative to uninformed traders)

increases the influence on prices of uninformed agents’ beliefs, leading PET agents to

omit a greater source of price variation.

Proposition 1 (Micro-foundation of Price Extrapolation). Partial equilibrium thinking

provides a micro-foundation for extrapolative expectations:

EU,t[DT ] = EU,t−1[DT ] +
(1

ã

)
∆Pt−1 (30)

where 1
ã

= 1+ 1
ζ̃
. Moreover, given a one-off shock to fundamentals, the bias is decreasing

in the true and perceived informational edge of informed traders:

ũt−1 − ut−1 =
(

b

ã

)
ũt−2 (31)

where b
ã

=
(

1
1+ζ

) (
1 + 1

ζ̃

)
.

Proof. All proofs are in Appendix A.

1.5 The Feedback-Loop Theory of Bubbles

Combining the expressions of the true price function in (15) and of the extracted signal

in (29), we find that when traders think in partial equilibrium changes in prices and in

beliefs evolve as an AR(1):

ũt−1 = ut−1 +
(

b

ã

)
ũt−2 (32)

∆Pt = aut +
(

b

ã

)
∆Pt−1 (33)

This is in contrast to the rational benchmark where, combining (15) and (17), we find

that when traders are rational price changes evolve as an MA(1):

ũt−1 = ut−1 (34)
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∆Pt = aut + but−1 (35)

Intuitively, partial equilibrium thinkers mistakenly infer a sequence of shocks from a

one-off shock, and this leads to over-reaction, as is clear from the second term in (32)

relative to its rational counterpart in (34). Following a one-off shock, PET agents fail to

realize that the second price rise is due to the buying pressure of all other uninformed

agents, and instead attribute it to further good news, which in turn fuels even higher

prices and more optimistic beliefs, in a self-sustaining feedback loop, just as we saw in

the example in Figure 1 in the introduction.

1.5.1 Strength of the Feedback Effect

As with all AR(1) processes, the AR(1) coefficient in the processes that describe equilib-

rium changes in prices and in beliefs in (32) and (33) is key to determining the properties

of equilibrium outcomes. In our case, this quantity also has a special meaning, in that

it captures the strength of the feedback effect between prices and beliefs, and it is de-

creasing both in the true informational edge (ζ), and in uninformed agents’ perception

of it (ζ̃):
b

ã
=
(

1
1 + ζ

)(
1 + 1

ζ̃

)
(36)

Intuitively, when uninformed agents’ perception of the informational edge is low, they

neglect a greater source of price variation, leading to a greater bias. Moreover, when the

true informational edge of informed agents is low, the influence on prices of uninformed

traders’ biased beliefs is higher. Both these forces contribute to fuelling the feedback

between outcomes and beliefs. We summarize these results in the following proposition.

Proposition 2 (Strength of the Feedback Effect). When agents think in partial equilib-

rium, the strength of the feedback between outcomes and beliefs is decreasing both in the

true informational edge (ζ), and in uninformed agents’ perception of it (ζ̃). Specifically,

environments with a smaller fraction of informed traders (ϕ), and with a lower true and

perceived confidence of informed agents relative to uninformed agents (τI/τU , τ̃I/τ̃U) are
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characterized by a stronger feedback between prices and beliefs.

Equation (32) then shows that deviations from rationality are increasing in the

strength of the feedback effect, leading to the following empirical prediction both in

the cross-section, and over time.

Proposition 3 (Deviations from Rationality). Deviations from rationality in both prices

and beliefs are decreasing in the true and perceived informational edges (ζ, ζ̃). Specifi-

cally, following a one-off shock to fundamentals, environments with a smaller fraction of

informed agents (ϕ), and with a lower true and perceived confidence of informed agents

relative to uninformed agents (τI/τU , τ̃I/τ̃U) exhibit greater departures from rationality.

1.5.2 Stable and Unstable Regions

Another feature of the AR(1) processes in (32) and (33) is that the system can be

stationary or non-stationary, depending on whether b/̃a < 1 or b/̃a > 1.

When b/̃a < 1, changes in prices and in beliefs in (32) and (33) are stationary, and

shocks eventually die out, so that prices and beliefs exhibit momentum and converge

to a new steady state (as shown in the left panel of Figure 2).18 On the other hand,

when b/̃a > 1 the system is non-stationary and the influence of the feedback effect is

explosive: consecutive changes in prices and beliefs get larger and larger, and prices and

beliefs accelerate in a convex way, becoming extreme and decoupled from fundamentals

(as shown in the right panel of Figure 2).

Definition 2 (Stable and Unstable Regions.). We refer to stationary regions with b/̃a < 1

as stable regions, and non-stationary regions with b/̃a > 1 as unstable regions.

Since we do not observe unbounded prices and beliefs in response to normal times

shocks (e.g. following earnings announcements), it is plausible to assume that in normal

times changes in prices and beliefs are stationary.
18Notice that PET outcomes do not converge to the rational expectations equilibrium as t → ∞.

Conditional on not observing the liquidating dividend, PET agents never unlearn their misinferred
information, as in Gagnon-Bartsch and Rabin (2016). In this respect, PET is attentionally stable in
the sense of Gagnon-Bartsch et al. (2021).
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Figure 2: Impulse response functions following a normal times shock. This Figure compares
the path of equilibrium price changes (left panel) and the corresponding path of equilibrium prices
(right panel) following a one-off fundamental shock u1 > 0 under rational expectations (REE) and
under partial equilibrium thinking (PET). The top panel plots the impulse response function when the
economy is in a stable region, with b/̃a < 1, and shows that price changes dies out, and prices gradually
converge to a new steady state level. The bottom panel plots the impulse response function when the
economy is in an unstable region, with b/̃a > 1, and shows that price changes become larger and larger
over time, and prices accelerate away from fundamentals in a convex way, and are unbounded.
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Moreover, since in (20) and (22) we showed that in normal times τi = τ̃i for i ∈ {I, U},

it follows that ζ̃ = ζ, and the strength of the feedback effect reduces to:

b

ã
= 1

ζ
(37)

so that for the response of the economy to normal times shocks not to be explosive it

must be that the aggregate confidence of informed agents is greater than the aggregate

confidence of uninformed agents.

b

ã
< 1 ⇐⇒ ζ > 1 ⇐⇒ ϕτI > (1 − ϕ)τU (38)

As long as the feedback between outcomes and beliefs is constant, the economy either

responds to shocks by monotonically converging to a new state-dependent steady state,

or it accelerates away from fundamentals, leading prices and beliefs to become extreme.

While the acceleration characteristic of the unstable regions of this theory may seem

well-suited to model the formation of bubbles (Greenwood et al. 2019), it leaves no

room for endogenous reversals and crashes.

In the next section, we show how displacements can generate time-variation in the

strength of the feedback effect, and shift the economy across stable and unstable regions.

By bringing the explosive properties of unstable regions into play before the convergent

properties of stable regions take over again, displacements can lead to the formation of

bubbles and endogenous crashes.

2 Displacements

“Displacement is some outside event that changes horizons, expectations, profit op-

portunities, behavior – some sudden advice many times unexpected. Each day’s events

produce some changes in outlook, but few significant enough to qualify as displacements”

(Kindleberger 1978). Examples include the widespread adoption of a ground-breaking

discovery, such as railroads in the 1840s, the radio and automobiles in the 1920s, and
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the internet in the 1990s; financial liberalization in Japan in the 1980s; or financial inno-

vations such as securitization prior to the 2008 financial crisis (Aliber and Kindleberger

2015).

While the exact nature of the displacement varies from one bubble episode to another,

what these shocks have in common is that they represent “something new under the sun,”

and their full implications for long term outcomes can only be understood gradually

over time, as more information becomes available (Pástor and Veronesi 2006, Pástor

and Veronesi 2009). When the internet was first made available to the public in 1993,

investors were aware of this new technology, but at the time nobody knew the full

potential of this invention. The development of blockchains as decentralized ledgers

has paved the way for cryptocurrencies. However, we are yet to learn about the full

implications of this technology, and assets that are associated with them have indeed

been prone to bubbly behavior.

This is in stark contrast to normal times shocks, which may come in the form of

regular earnings announcements. Following these news events, sophisticated traders are

well trained to immediately process and understand the content of such news (e.g. the

implications of same store sales on long term outcomes), while uninformed traders can

learn about their implications more slowly, by seeing how the market reacts to them.

As we saw in Section 1, in normal times informed traders are always one step ahead of

uninformed traders, and their informational edge is constant.

In this section we show how displacement shocks generate time-variation in informed

agents’ edge, which in turn leads to time-varying extrapolation, and a time-varying

strength of the feedback between prices and beliefs. This can shift the economy between

stable and unstable regions. Specifically, when the displacement first materializes, in-

formed agents’ edge is wiped out, thus increasing the influence on prices of uninformed

agents’ beliefs and the strength with which they extrapolate. Both of these forces fuel

the feedback between prices and beliefs. If the uncertainty associated with the displace-

ment is high and persistent enough, the economy can enter the unstable region, leading

prices and beliefs to accelerate away from fundamentals. Then, as informed agents learn
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about the new technology and regain their edge, the feedback effect weakens, and the

economy re-enters the stable region. This leads the bubble to burst and prices and

beliefs to return back towards fundamentals.

We conclude this section by discussing how the speed of information arrival shapes

the duration and amplitude of bubbles, as well as alternative ways of modeling a dis-

placement.

2.1 Displacement Shocks

We model displacements as an uncertain positive shock to long-term outcomes that

agents can learn about only gradually over time. Starting from a normal-times steady

state where uninformed agents’ beliefs are consistent with the price they observe, in

period t = 0 both informed and uninformed traders learn that there is “something new

under the sun,” but do not know the exact implications of such shock for long-term

outcomes. Specifically, in period t = 0, all agents learn that the terminal dividend

changes by an uncertain amount ω ∼ N(µ0, τ−1
0 ), where µ0 > 0:19

DT = D̄ +
∞∑

j=0
βjuj + ω (39)

Initially, all agents share the same unconditional prior over ω. Starting in period t = 1,

each period informed agents observe a common signal that is informative about the

displacement, st = ω + ϵt with ϵt ∼iid N(0, τ−1
s ). Uninformed agents do not observe

these signals but still learn information from past prices.

We solve the model using the same three steps we used in normal times: first, we

specify what truly generates price changes agents observe. Second, we specify what

uninformed agents think is generating these price changes, and find the mapping PET

agents use to extract information from prices. Third, we solve the model recursively,

and discuss the properties of equilibrium outcomes.

19In Appendix C.1 we also consider the case where µ0 < 0, and show how with partial equilibrium
thinking negative bubbles are dampened relative to positive ones.
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2.2 True Price Function following a Displacement

Following a displacement, informed agents observe new signals ut and st in each period,

and they revise their beliefs accordingly, via standard Bayesian updating:

EI,t[DT ] = EI,t−1[DT ] + ut + wt (40)

VI,t[DT ] = VI,t

[ ∞∑
h=1

βhut+h + ω

]
= VI + (tτs + τ0)−1 (41)

where wt ≡ EI,t[ω] − EI,t−1[ω] = τs

tτs+τ0
(st − EI,t−1[ω]) is informed agents’ revision of

their beliefs about the displacement ω in light of the new signal st. Equation (41) shows

that when the displacement is announced, informed agents face greater uncertainty than

before, but their confidence gradually rises back towards its steady state level as they

receive more signals about ω and learn more about the displacement over time.

On the other hand, in each period t, uninformed agents are learning ũt−1 + w̃t−1 from

the price change they observe in period t − 1, and their posterior beliefs are given by:

EU,t[DT ] = EU,t−1[DT ] + ũt−1 + w̃t−1 (42)

VU,t[DT ] = VU,t

[
ut +

∞∑
h=1

βhut+h + ω

]
= VU + ((t − 1)τs + τ0)−1 (43)

where (41) shows that uninformed agents also face greater uncertainty when the dis-

placement is announced, but their confidence also rises back towards its steady state

level as they learn about ω from past prices over time. Specifically, after t periods, PET

agents have learnt about the displacement from (t − 1) price changes.

Combining the information in (41) and (43), informed agents’ edge is initially diluted

by the increase in aggregate uncertainty, but then gradually rises back to its steady state

level:

ζt =
(

ϕ

1 − ϕ

)(
VU + ((t − 1)τs + τ0)−1

VI + (tτs + τ0)−1

)
(44)

Given these beliefs, we find that price changes capture both changes in mean beliefs,
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and changes in confidence levels:20

∆Pt = at (ut + wt)︸ ︷︷ ︸
instantaneous response of I

to new information

+ bt (ũt−1 + w̃t−1)︸ ︷︷ ︸
lagged response of U

from learning from past prices

+
(
Pt|t−1 − Pt−1

)
︸ ︷︷ ︸
changes in confidence

(46)

where the influence on prices of informed and uninformed traders’ beliefs are given by:

at ≡ ζt

1 + ζt

= 1 − bt bt ≡ 1
1 + ζt

(47)

Moreover, the change in price that is due to changes in agents’ levels of confidence is:

(Pt|t−1 − Pt−1) ≡ ∆atEI,t−1[DT ] + ∆btEU,t−1[DT ] − ∆ct (48)

where ct ≡ AZ
ϕτI,t+(1−ϕ)τU,t

is the risk-premium component.

There are two important points to notice from these expressions. First, time-variation

in informed agents’ edge generates variation in the relative influence on prices of informed

and uninformed agents’ beliefs (ãt and b̃t, respectively). As informed traders initially

lose their edge and then regain it, the influence on prices of informed traders’ beliefs

initially drops and then gradually rises again. By symmetry, the influence on prices of

uninformed traders’ biased beliefs initially rises, and then gradually falls.

Second, (46) shows that price changes now reflect three components. The first two

components are due to changes in mean beliefs of both informed and uninformed traders,

just as in normal times. However, displacements now bring into play a third source of

price variation, which is due to changes in informed and uninformed traders’ relative

confidence levels. As shown in the definition of (Pt|t−1 − Pt−1) above, changes in rela-

tive confidence levels manifest themselves in two ways. First, holding individual level

beliefs fixed, changes in relative confidence levels lead to a change in the weighted av-

20Market clearing yields:
Pt = atEi,t[DT ] + btEU,t[DT ] − ct (45)

where at, bt, and ct are defined in the main text. Taking first differences of this expression, using agents’
posterior beliefs in (40) and (42), and rearranging yields the expression in (46).
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erage of beliefs, by changing the relative weights on informed and uninformed traders’

beliefs (∆atEI,t−1[DT ] + ∆btEU,t−1[DT ]). Second, changes in confidence levels also lead

to changes in the aggregate risk-bearing capacity, therefore adding an additional source

of price variation via changes in the risk premium component (∆ct).

Both these features contribute to the dynamics of bubbles of and crashes, as will

become clear when discussing equilibrium dynamics in Section 2.4. Before that, we

now turn to specifying the mapping uninformed traders use to extract information from

prices.

2.3 Micro-founding Time-varying Price Extrapolation

Just as we did in Section 1, to understand what information uninformed agents extract

from past prices, we start by specifying what uninformed agents think is generating the

price changes they observe. This, in turn, requires us to work out PET agents’ beliefs

about other agents’ actions and beliefs. Following a displacement, PET agents think

that in period t − 1 informed agents trade on all signals they have received up until

period t − 1, {ũj}t−1
j=0 and {s̃j}t−1

j=1:

ẼI,t−1[DT ] = ẼI,t−2[DT ] + ũt−1 + w̃t−1 (49)

ṼI,t−1[DT ] = VI + ((t − 1)τs + τ0)−1 (50)

where w̃t ≡ ẼI,t[ω]− ẼI,t−1[ω] = τs

tτs+τ0

(
s̃t − ẼI,t−1[ω]

)
. Moreover, (50) reflects that after

(t−1) periods informed agents have observed (t−1) price changes which incorporate (t−

1) signals about the displacement. Notice that ṼI,t−1[DT ] it time-varying as uninformed

agents recognize that informed agents’ confidence decreases when the displacement is

announced, and then increases over time as they learn more about it.

Moreover, PET agents think that all other uninformed agents do not learn informa-

tion from prices, and instead trade on their fixed prior beliefs:

ẼU,t−1[DT ] = ẼU,t−2[DT ] = D̄ + µ0 (51)
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ṼU,t−1[DT ] = VU + (τ0)−1 (52)

where (52) shows that following a displacement PET agents believe that other unin-

formed agents face greater and constant uncertainty as they do not learn new information

after the displacement is announced.

Combining the information in (50) and (52), PET agents’ perception of informed

agents’ edge (ζ̃t−1) is initially diluted by the rise in aggregate uncertainty due to the

displacement, and then gradually rises over time as informed agents learn more about

it:

ζ̃t−1 =
(

ϕ

1 − ϕ

)(
VU + (τ0)−1

VI + ((t − 1)τs + τ0)−1

)
(53)

While these dynamics mirror those in the true informational edge in (44), notice that ζ̃t

rises at a faster rate than ζt, as depicted in panels (a) and (b) of Figure 3. Intuitively,

since PET agents think that uninformed agents are not learning more information over

time, they think that informed agents regain their edge over uninformed agents at a

faster rate than they do in reality: in period t PET agents think informed agents know

t more signals than uninformed agents, when in reality all uninformed agents learn from

past prices and informed agents are only one period ahead of uninformed agents.

Given these beliefs, PET agents think that price changes now reflect two compo-

nents:21

∆Pt−1 = ãt−1 (ũt−1 + w̃t−1)︸ ︷︷ ︸
instantaneous response of I

to new information

+
(
P̃t−1|t−2 − Pt−2

)
︸ ︷︷ ︸
changes in confidence

(55)

where:

ãt−1 ≡ ζ̃t−1

1 + ζ̃t−1
b̃t−1 ≡ 1

1 + ζ̃t−1
(56)

21The perceived market clearing condition yields:

Pt = ãtẼi,t[DT ] + b̃tẼU,t[DT ] − c̃t (54)

where ãt, b̃t, and c̃t are defined in the main text. Taking first differences of this expression, using agents’
posterior beliefs in (49) and (51), and rearranging yields the expression in (46). Notice in particular
that uninformed traders think other uninformed traders never update their beliefs, so this term does
not show up in (55).
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and
(
P̃t−1|t−2 − Pt−2

)
captures changes in prices due to increases in confidence levels:

(
P̃t−1|t−2 − Pt−2

)
=
(
∆ãt−1ẼI,t−2[DT ] + ∆b̃t−1ẼU,t−2[DT ]

)
− ∆c̃t−1 (57)

where c̃t−1 ≡ AZ
ϕτ̃I,t−1+(1−ϕ)τ̃U′

. Fixing individual level beliefs, this term reflects both

perceived changes in weights on informed and uninformed traders’ beliefs, and perceived

changes in risk-premia. In what follows we argue that at the peak of the bubble partial

equilibrium thinkers over-estimate changes in prices due to changes in confidence levels.

This leads them to expect greater price changes than the ones they observe. As their

beliefs are disappointed, they attribute this discrepancy to negative fundamental news,

leading the bubble to burst.

PET agents then invert the mapping in (55), and attribute the unexpected part of

the price change they observe to new information (ũt−1 + w̃t−1), leading to time-varying

extrapolation.

Proposition 4 (Time-varying Extrapolation). Following a displacement shock, partial

equilibrium thinking leads to time-varying price extrapolation, with traders extrapolating

the unexpected part of the price change they observe. Posterior beliefs are given by:

EU,t[DT ] = EU,t−1[DT ] + 1
ãt−1

(
Pt−1 − P̃t−1|t−2

)
(58)

where 1
ãt−1

= 1 + 1
ζ̃t−1

.

The time-varying extrapolation parameter is also shown in panel (d) of Figure 3. As

well as being consistent with empirical evidence that documents a time-varying extrapo-

lation parameter (Cassella and Gulen 2018), micro-founding the extrapolation parameter

in this way allows us to understand the assumptions implicit in models of constant price

extrapolation. Specifically, they assume that following a large structural break in prices,

agents still forecast prices in exactly the same way as they did before the structural

break, which is counterfactual.

This also highlights another important point. We model partial equilibrium thinking
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Figure 3: Time-variation in the true and perceived informational edges, and in bt and
1/̃at−1 following a displacement shock. Panels (a) and (b) plot the true and perceived informational
edges after a displacement shock, respectively. Following a displacement shock in period t = 0, both
ζ and ζ̃ are initially wiped out, and then gradually rise over time as traders learn more about the
displacement over time. Comparing panels (a) and (b) shows that the true informational edge rises
at a faster rate than the perceived informational edge. Panel (c) plots how the influence on prices of
uninformed agents’ beliefs (bt) varies over time following a displacement: bt initially rises and then
gradually declines. Panel (d) plots how the strength with which PET agents extrapolate past prices
(1/̃at) varies over time following a displacement: when the displacement is announced, PET agents
initially extrapolate past prices more aggressively, and then the degree with which they extrapolate
declines over time.
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by staying as close as possible to the rational expectations benchmark. While the infer-

ence problem is much simpler than the rational counterpart (since PET agents do not

have to think about higher-order beliefs) it still requires some degree of sophistication
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on the part of uninformed traders. On the one hand, this is inherent in the nature of our

bias, where traders think they are the only ones learning information from prices, and

think they have an edge relative to their peers.22 On the other hand, the reduced form

nature of our bias translates into a very simple strategy and heuristic, which does not

require much sophistication. If traders think about what generates the price changes

they are learning from, it is natural for them to engage in constant price extrapolation

when the properties of the environment they are learning from are stable, and to adjust

the degree of extrapolation in response to a structural break. In other words, our theory

can be understood as explaining when and why agents change heuristics: they do so in

response to different type of shocks that change the properties of the environment.

2.4 Displacement, Bubbles and Crashes

By combining the results from Sections 2.2 and 2.3, we find that following a displacement

PET agents’ prices and beliefs evolve as follows:

∆Pt = at(ut +wt)+
(

bt

ãt−1

)
∆Pt−1 −

((
bt−1

ãt−1

)
(P̃t−1|t−2 − Pt−2) − (Pt|t−1 − Pt−1)

)
(59)

(ũt−1 + w̃t−1) =
(

at−1

ãt−1

)
(ut−1 + wt−1) +

(
bt−1

ãt−1

)
(ũt−2 + w̃t−2) − 1

ãt−1

(
P̃t−1|t−2 − Pt−1|t−2

)
(60)

These expressions are reminiscent of the AR(1) processes in (32) and (33), with two key

differences, which together allow for the formation of bubbles and crashes following a

displacement shock, as shown in Figure 5. First, the strength of the feedback between

prices and beliefs is now time-varying, so that equilibrium dynamics can now shift across

stable and unstable regions. When the equilibrium dynamics shift to a non-stationary

22Partial equilibrium thinking can either be seen as an example of the Lake-Wobegan (or better-
than-average) effect (Svenson 1981, Maxwell and Lopus 1994), or as agents paying limited attention
to others’ informational inferences, rather than having false beliefs about others’ inference (Eyster and
Rabin 2010).
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region, prices and beliefs accelerate away from fundamentals leading to the build up of

the bubble. Second, the last term in both (59) and (60) acts as a pull-back force, that

dampens increases in prices and beliefs during the formation of the bubble. It is this

term that ultimately allows uninformed agents’ beliefs to be disappointed at the peak

of the bubble, leading to reversals and a crash. We now discuss both of these differences

in detail.

Substituting (47) and (56) into the pseudo-AR(1) coefficient in the evolution of beliefs

in (60), we find that the strength of the feedback effect now takes the following form:

bt

ãt

=
(

1
1 + ζt

)(
1 + 1

ζ̃t

)
(61)

Figure 4 shows that when the displacement materializes in period t = 0, the strength

of the feedback effect initially increases as the economy is flooded with uncertainty, and

both the true and the perceived informational edges are diluted. However, as agents start

learning about the displacement, the strength of the feedback effect gradually declines.

Starting from a stable region in normal times, Appendix B.2 shows that if the increase

in uncertainty generated by the displacement is large enough, the economy enters an un-

stable region (bt/̃at > 1), allowing prices and beliefs to accelerate away from fundamentals.

In the long run the economy always returns to a stable region, as limt→∞ bt/̃at < b/̃a < 1

since limt→∞(bt − b) = 0 and limt→∞(ãt − ã) > 0, with prices and beliefs converging to

a new steady state.

Proposition 5 (Time-varying Strength of the Feedback Effect). When agents think in

partial equilibrium, the strength of the feedback effect between prices and beliefs becomes

time varying in response to a displacement shock. In each period t, it is decreasing both

in the true informational edge (ζt), and in uninformed agents’ perception of it (ζ̃t). In

the long-run, the feedback effect converges to a steady-state value strictly lower than 1.

However, a time-varying feedback effect in and of itself is not enough to lead to the

bursting of the bubble. Indeed, we need uninformed agents to infer negative information

from prices (ũt−1 + w̃t−1 < 0) and price changes to become negative (∆Pt < 0) for prices
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Figure 4: Time variation in the strength of the feedback effect following a displacement.
This figure shows how the strength of the feedback between outcomes and beliefs varies over time
following a displacement. The dotted line at b/̃a = 1 separates the stable region (b/̃a < 1) from the
unstable region (b/̃a > 1). Starting from a normal times steady state where the strength of the feedback
effect is less than one, a displacement is announced in period t = 0, and this leads the strength of
the feedback effect to initially rise and then gradually decline over time. The initial increase in b/̃a is
increasing in the uncertainty associated with the displacement (τ0)−1, and this figure depicts a scenario
where (τ0)−1 is large enough to initially shift the economy to an unstable region. Eventually, as informed
agents learn more about the displacement, the strength of the feedback effect weakens and the economy
returns to a stable region.
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and beliefs to revert back towards fundamentals and for the bubble to burst. Moving

from an unstable to a stable region simply ensures that price changes go from being

positive and increasing over time to positive and decreasing over time, but does not

deliver negative price changes on its own.23 Instead, to achieve the reversal, we need

stability together with the presence of the last correction term in (59), which allows

price changes to become negative.

To gain further intuition as to why PET traders’ beliefs are eventually disappointed,

notice that the intercept term in (59) is coming from uninformed traders’ misunder-

standing of the part of the price change due to changes in confidence alone. Following

a positive displacement shock, PET agents mistakenly think that informed traders are

23In other words, a time-varying bt/̃at−1 would not be enough to get a reversal if equilibrium price
changes evolved as follows:

∆Pt = at(ut + wt) +
(

bt

ãt−1

)
∆Pt−1 (62)

Following a one-off positive shock to fundamentals (ut + wt > 0 for t = 0 and ut + wt = 0 for t > 0),
there would be no term that allows for ∆Pt to become negative, unlike the additional term in (59).
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more optimistic than uninformed traders. Fixing individual beliefs, as informed traders

regain their edge over time, PET traders think that the average belief becomes more

optimistic (∆ãtẼI,t[DT ] + ∆b̃tD̄ > 0), and that this pushes prices up further. In real-

ity informed traders are less optimistic than uninformed traders, so that, as informed

traders regain their edge, the average belief actually becomes less optimistic over time

and closer to the rational benchmark (∆atEI,t[DT ] + ∆btEU,t < 0). This puts a neg-

ative (corrective) pressure on prices. By over-estimating the part of the price change

due to changes in confidence levels, partial equilibrium thinkers eventually expect price

rises that are higher than the price changes that they observe. When this occurs, their

beliefs are disappointed, which leads them to become more pessimistic, and the bubble

to burst. In Appendix B.3 we show more formally how these forces can only induce a

reversal once the economy has returned to a stable region.

Figure 5 shows the path of equilibrium outcomes following a displacement shock.

Initially, as the economy enters the unstable region, prices and beliefs accelerate away

from fundamentals in a convex way, and reach levels several multiples of the fundamen-

tal value of the asset (Greenwood et al. 2019). As the strength of the feedback effect

weakens, and the economy re-enters the stable region, PET agents’ expectations are dis-

appointed, leading the bubble to burst, and prices and beliefs to converge back towards

fundamentals. Partial equilibrium thinking naturally delivers these key characteristics

of bubbles by exploiting the properties of unstable regions. The duration of the bubble

is then longer and its amplitude greater when the uncertainty associated with the dis-

placement is higher, and it takes longer to resolve over time, as in these cases equilibrium

dynamics spend longer in the non-stationary region.

Moreover, notice that while the initial stage of the bubble is associated with high

trading volume (Barberis 2018, Hong and Stein 2007), our model is also consistent with

empirical evidence in DeFusco et al. (2020) that documents a quiet period before the

bust, during which trading volume is falling while prices are still rising. Intuitively,

partial equilibrium thinking leads to endogenously heterogeneous beliefs, and during the

formation of the bubble disagreement initially increases at an increasing rate, and then
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increases at a decreasing rate. Similar dynamics occur during the bust, this time in

reverse.

Figure 5: Bubbles and crashes following a displacement. Starting from a normal times steady
state, a displacement ω ∼ N(µ0, τ−1

0 ) is announced in period t = 0, and we let its realized value be
ω = µ0. Informed agents then receive a signal st = ω +ϵt with ϵt ∼ N(0, τ−1

s ) each period, where ϵ1 > 0
and ϵt = 0 ∀t > 1. This figure compares the path of equilibrium prices, uninformed agents’ beliefs,
trading volume and agents’ positions in the risky asset following a displacement which temporarily
shifts the economy into an unstable region, under rational expectations and under partial equilibrium
thinking. As the economy shifts into an unstable region when the displacement is announced, prices
and beliefs accelerate away from fundamentals. This phase of the bubble is also associated with high
trading volume, and PET agents being long the asset. Eventually, as the strength of the feedback
effect weakens, the economy returns to a stable region and uninformed agents’ beliefs are disappointed,
leading to a crash.
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2.5 Other Features of Bubbles

Appendix C.1 considers a negative displacement shock, with µ0 < 0. Interestingly, neg-

ative bubbles are not merely symmetric, and instead are dampened relative to positive

bubbles. To understand why this is the case, we ought to focus on the true and per-

ceived risk-premium components. Regardless of the sign of the displacement shock, the

gradual resolution of uncertainty over time exerts an upward force on prices, as the

increased risk-bearing capacity reduces the risk-premium component. However, PET

agents under-estimate this upward force, as they believe that other uninformed traders

are not learning and becoming more confident over time. By under-estimating the in-

crease in risk-bearing capacity, they then under-estimate the upward force on prices

coming from changes in risk-premia, and instead attribute part of this to better funda-

mentals. This force is as at play both when the cash flow shock of the displacement is

positive, and when it is negative, therefore amplifying positive bubbles and dampening

negative ones. This in contrast to equilibrium dynamics with constant price extrap-

olation, where this dampening channel is absent, and where negative bubbles would

actually be more pronounced than positive ones following a displacement shock.24

Appendix C.2 then shows how the exact shape of the bubble depends on the speed

with which information about the displacement becomes available over time. For ex-

ample, Figure 9 shows how the model can deliver a slower boom and a faster crash if

information about the displacement is revealed slowly at first, and at a faster rate once

the bubble bursts (see Veldkamp (2005) and Ordonez (2013) for models with endogenous

information flows during booms and busts).

Finally Appendix C.3 considers the case where uninformed traders are misspecified

about the frequency of information arrival. When this is the case, time-variation in

the degree of extrapolation ensures that bubbles can burst even as the aggregate risk

24Intuitively, the initial increase in uncertainty associated with the displacement exerts a downward
pressure on prices, which dampens positive cash flow shocks, and amplifies negative cash flow shocks.
Fixing the size of the cash flow shock in absolute value, this asymmetry then leads to a greater initial
price change following a negative shock relative to the same size positive shock. Extrapolating a greater
initial price change with constant price extrapolation then leads to more amplified dynamics in response
to negative shocks.
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bearing capacity of informed traders is decreasing relative to that of uninformed traders,

something which would not be possible if we had constant price extrapolation.

2.6 Other Types of Displacements

A key lesson from our analysis so far is that shocks that generate bubbles and crashes

must have two properties: they must shift the economy to an unstable region, and such a

shift must be temporary. So far, we have considered one possible way to achieve this via

a positive shock that creates uncertainty, which gradually resolves over time. However,

the sources of variation in bt

ãt
discussed in Proposition 2 are informative about other

types of shocks which may contribute to the formation of bubbles and crashes.

Specifically, we can write the strength of the feedback effect as follows:

bt

ãt

=
(

1
1 + ζt

)(
1 + 1

ζ̃t

)
< 1 ⇐⇒

(
ϕt

1 − ϕt

τI,t

τU,t

)(
ϕ̃t

1 − ϕ̃t

τ̃I,t

τ̃U,t

)
> 1 (63)

where the second inequality simply follows from re-arranging the first one, and using the

definition of the true and perceived informational edges.25 Moreover, (63) generalizes

our earlier expressions by allowing the fraction of informed agents in the market to be

time-varying, and by allowing uninformed agents to be misspecified about this quantity

(ϕ̃t ̸= ϕt). There are four components of the information structure that can then lead to

time-variation in the strength of the feedback effect: the true and the perceived confi-

dence of informed agents relative to uninformed agents, and the true and the perceived

composition of agents in the market. Temporary shocks to these quantities can also

contribute to the time-varying strength of the feedback effect.

For example, Greenwood and Nagel (2009) find that young inexperienced investors

increased exposure to technology stocks during the dot.com bubble, and decreased it

during the crash. More generally, historical narratives associate displacements with

large changes in the composition of agents in the market (Mackay 1841, Brooks 1999,

Brennan 2004, Aliber and Kindleberger 2015). This paper highlights how changes in

25Re-arranging the first inequality, we get: (1 + ζt) >
(

1+ζ̃t

ζ̃t

)
⇐⇒ ζtζ̃t > 1.
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the composition of traders constitute another source of time-variation in the strength of

the feedback effect, and hints to how the timing of these changes can play an important

role in determining the shape and amplitude of bubbles.

3 Speculative Motives

A noted feature of bubbles neglected so far is the role of destabilizing speculation. When

explaining the stage of ‘euphoria’ characteristic of bubbles, Kindleberger (1978) describes

how “[i]nvestors buy goods and securities to profit from the capital gains associated with

the anticipated increases in the prices of these goods and securities.”26

To model speculative motives, we change agents’ objective function. Specifically,

instead of having agents who are only concerned with forecasting the terminal dividend

as in (4), we now assume that agents have CARA utility over next period wealth, and

forecast next period’s payoff:

Πt+1 = βPt+1 + (1 − β)Dt (64)

which simply reflects traders’ beliefs that with probability β the asset is alive next period,

and is worth Pt+1, and with probability (1 − β) the asset dies, and pays out a terminal

dividend Dt = D̄ + ∑t
j=0 uj in normal times and Dt = D̄ + ∑t

j=0 uj + ω following a

displacement. Taking first order conditions, we have that agents now trade according to

the following asset demand function, given their beliefs:

Xi,t = Ei,t[Πt+1] − Pt

AVi,t[Πt+1]
(65)

In Appendix B.4 we solve the model with speculative motives using the same three

steps as in Section 2, and show that the true price function is linear in agents’ be-

liefs, and that partial equilibrium thinking still provides a micro-foundation for price
26Using survey data in the Michigan Survey of Consumers, Piazzesi and Schneider (2009) find that

during the recent US housing boom there was a growing cluster of households who thought it was a
good time to buy because they believed house prices would rise further.
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extrapolation:

Pt = atEI,t[Πt+1] + btEI,t[Πt+1] − ct (66)

EU,t[Πt+1] = EU,t−1[Πt+1] + θt

(
Pt−1 − P̃t−1|t−2

)
(67)

where at, bt, ct and θt are once again constant in normal times, but become time-varying

following a displacement. While these coefficients still depend on the properties of the

environment, their functional form depends on agents’ higher order beliefs. Specifically,

since agents are forecasting future endogenous outcomes, they need to forecast other

agents’ future beliefs. While partial equilibrium thinking helps to pin down uninformed

agents’ higher order beliefs (they simply assume that all agents trade on their own

private information and that this is common knowledge), it allows for more flexibility

about informed agents’ higher order beliefs.

In this section, we consider two cases. First, we let informed agents understand unin-

formed agents’ biased beliefs, which in turn implies that they understand that mispricing

is predictable. Second, we consider the case where informed agents mistakenly believe

that all other agents are rational and extract the right information from prices. We

refer to the first type of speculators as being “PET-aware,” and to the second type as

being “PET-unaware.” This lines up with the distinction in practical asset management

between investors who think about behavioral biases in the market, and those who only

concentrate on the gap between market prices and their estimates of fundamentals.

Figure 6 contrasts the dynamics of equilibrium outcomes in normal times and fol-

lowing a displacement, with and without speculative motives. As in the case without

speculation, panel (a) shows that normal times dynamics only exhibit a small degree

of momentum and speculative motives keep prices closer to fundamentals. After a dis-

placement shock, however, panel (b) of Figure 6 makes clear that the dynamics heavily

depend on the behavior of informed speculators. When informed agents understand

other agents’ biases, they engage in destabilizing speculation and amplify the bubble.

Intuitively, when informed agents realize that mispricing is predictable, they understand
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that higher prices today translate into more optimistic beliefs by uninformed agents and

higher prices tomorrow. This increases informed agents’ expected capital gains and in-

duces them to demand more of the asset today, inflating prices further (as in De Long

et al. 1990).

Figure 6: Normal Times and Bubbles and crashes with speculators. Panel (a) compares
the path of equilibrium prices under rational expectations, partial equilibrium thinking, “PET-aware”
speculation, and “PET-unaware” speculation in normal times. Starting from a normal times steady
state, Panel (b) considers a displacement ω ∼ N(µ0, τ−1

0 ) announced in period t = 0. Informed agents
then receive a signal st = ω + ϵt in each period, where ϵ1 > 0 and ϵt = 0 ∀t > 1. “PET-aware”
speculation amplifies the bubble relative to the case with no speculative motives, while “PET-unaware”
speculation arbitrages the bubble away.
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To take advantage of predictable mispricing, “PET-aware” speculators require a high

level of understanding of other agents’ actions and beliefs. Alternatively, we consider

the case where informed agents mistakenly believe that they live in a rational world

and think that uninformed agents are able to recover the right information from past

prices. In this case, informed agents believe that any current mispricing will be corrected

next period. This leads them to trade more aggressively on their own information, thus

keeping prices closer to fundamentals, and effectively arbitraging the bubble away.

This analysis highlights the importance of higher order beliefs in the formation of

bubbles: only if investors think that mispricing is likely to persist do they engage in

destabilizing speculation. If instead they think mispricing is temporary, they engage in

fundamental speculation and arbitrage it away (Abreu and Brunnermeier 2002, Abreu
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and Brunnermeier 2003).

4 Conclusion

In this paper we provide a micro-foundation for the degree of price extrapolation with a

theory of “Partial Equilibrium Thinking” (PET), in which uninformed agents mistakenly

attribute any price change they observe to new information alone, when in reality part

of the price change is due to other agents’ buying/selling pressure. We show that when

agents think in partial equilibrium the degree of extrapolation varies with the information

structure, and is decreasing in informed agents’ informational edge.

This micro-foundation provides a unifying theory of both weak departures from ra-

tionality in normal times, and extreme bubbles and crashes following a displacement.

These are simply different manifestations of the same two-way feedback between prices

and beliefs. In normal times, informed agents’ edge is constant, and PET delivers con-

stant price extrapolation. By contrast, following a displacement, informed agents’ edge

is temporarily wiped out, and PET agents’ degree of extrapolation is stronger at first,

but then gradually dies down, leading to bubbles and endogenous crashes.

While this paper provides a first step in micro-founding the degree of price extrap-

olation, our analysis leaves several open avenues for future work. First, a quantitative

assessment of our theory would shed light on the extent of amplification that time-

varying extrapolation can provide in explaining departures from rationality, and would

clarify the importance of this channel. Second, by looking at the variation in the degree

of price extrapolation and in individual level forecasts, our model offers two predictions

that distinguish it from models of constant price extrapolation, and of fundamental

extrapolation: i) unlike models of constant price extrapolation, when agents think in

partial equilibrium the degree of price extrapolation is stronger when there are fewer in-

formed agents in the market, and when informed agents’ edge is greater; ii) unlike models

of fundamental extrapolation, when agents think in partial equilibrium the bias in indi-

vidual level forecasts depends on the composition of agents in the market, as this affects
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the extent of misspecification. These predictions can be tested both in the cross-section

and over time. As the literature moves to incorporating non rational expectations into

macro and finance models, and to studying their quantitative and policy implications,

distinguishing between different sources of irrationality is increasingly important, and

evidence that sheds light on these issues is a fruitful avenue for future research.
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Appendices

A Proofs

A.1 Proof of Proposition 1: Micro-foundation of Price Extrap-

olation

In equation (29) we showed that in period t partial equilibrium thinkers extract the

following fundamental shock from past prices:

ũt−1 =
(1

ã

)
∆Pt−1 (A.1)

Combining this with the expression for uninformed traders’ posterior beliefs in (7), we

find that:

EU,t[DT ] = EU,t−1[DT ] +
(1

ã

)
∆Pt−1 (A.2)

which provides a micro-foundation for extrapolative beliefs where uninformed traders

extrapolate recent price changes in forecasting future fundamentals.

To understand how the size of the bias inherent in partial equilibrium thinking varies

with informed traders’ edge, start from the expression in (32) for the equilibrium evolu-

tion of signals uninformed traders extract from prices:

ũt−1 = ut−1 +
(

b

ã

)
ũt−2 (A.3)

If we consider the impulse response function to a one-off shock to fundamentals in period

t = 1, so that ut ̸= 0 for t = 1 and ut = 0 for t > 1, we can iterate the above expression

backwards, and find that:

ũt =
(

b

ã

)t−1

u1 (A.4)

which shows that while uninformed traders extract the right signal in the first period

after the shock, they extract a biased signal in each period thereafter. Specifically, since
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ut = 0 for t > 1, we have that:

ũt − ut =
(

b

ã

)t−1

u1 (A.5)

so that for a given fundamental shock u1 the bias is increasing in the strength of the

feedback effect b/̃a in (36):
b

ã
=
(

1
1 + ζ

)(
1 + 1

ζ̃

)
(A.6)

Since the strength of the feedback effect is decreasing in the true and perceived infor-

mational edges, it follows that the bias in uninformed traders’ beliefs is also decreasing

in both these terms.

A.2 Proof of Proposition 2: Strength of the Feedback Effect

Equation (36) shows that the strength of the feedback effect is given by:

b

ã
=
(

1
1 + ζ

)(
1 + 1

ζ̃

)
(A.7)

Combining this with the definitions of the informed agents’ edge ζ in (9), and of unin-

formed agents’ perception of it, ζ̃, we find that:

b

ã
=
(

1
1 + ζ

)(
1 + 1

ζ̃

)
=

 1
1 + 1

1
ϕ

−1
τI

τU


1 +

(
1
ϕ

− 1
)

1
τ̃I

τ̃U

 (A.8)

The first equality shows that the strength of the feedback effect is decreasing in both the

true informational edge, ζ, and in uninformed agents’ perception of it, ζ̃. The second

equality shows that the strength of the feedback effect is decreasing in the fraction of

informed agents in the market, ϕ (by inspection, both 1
1+ζ

and 1
ζ̃

are decreasing in ϕ) and

in the true and perceived confidence of informed agents relative to uninformed agents
τI/τU , τ̃I/τ̃U .
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A.3 Proof of Proposition 3: Deviations from Rationality

When traders have rational expectations, they infer the right information from prices at

each point in time. Following, a one-off shock in period 0, uninformed traders learn the

following information from price:

ũREE
0 = u0 ̸= 0 (A.9)

ũREE
t = ut = 0 ∀t > 0 (A.10)

It follows that under rational expectations, uninformed traders’ beliefs are given by:

EU,0[DT ]REE = D̄ (A.11)

EU,t[DT ]REE = D̄ + u0 ∀t > 0 (A.12)

This reflects that rational uninformed traders understand that there is no new infor-

mation after period 0, and that all other price changes they observe are due to the

lagged response of all uninformed traders who are also learning information from prices.

Therefore, they no longer update their beliefs following the second price rise, as in the

example in Figure 1. The corresponding equilibrium prices are then given by:

P REE
0 = P̄ + ∆P0 = P̄ + au0 (A.13)

P REE
t = P̄ + ∆P0 + ∆P1 +

t∑
j=2

∆Pt︸ ︷︷ ︸
=0

= P̄ + au0 + bu0 ∀t > 0 (A.14)

where ∑t
j=2 ∆Pt = 0 as neither informed nor uninformed agents update their beliefs

after period t = 1, and in normal times the risk-premium component
(

AZ
ϕτI+(1−ϕ)τU

)
is

also constant over time.

On the other hand, from (15) and (A.2) together with the fact that in normal times

a = ã, we know that when uninformed traders think in partial equilibrium, equilibrium
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beliefs and prices are given by:

EU,0[DT ] = D̄ (A.15)

EU,1[DT ] = D̄ + u0 (A.16)

EU,t[DT ] = D̄ + u0 +
t−1∑
j=1

(
b

ã

)j

u0 (A.17)

and:

P0 = P̄ + au0 (A.18)

P1 = P̄ + au0 + bu0 (A.19)

Pt = P̄ + au0 + bu0 +
t∑

j=2

(
b

ã

)j

(au0) (A.20)

Comparing PET to REE outcomes, we see that when traders think in partial equi-

librium, deviations from rational outcomes are given by:

EU,t[DT ] − EREE
U,t [DT ] = 0 for t = 0, 1 (A.21)

EU,t[DT ] − EREE
U,t [DT ] =

t−1∑
j=1

(
b

ã

)j

u0 ∀t > 1 (A.22)

and:

Pt − P REE
t = 0 for t = 0, 1 (A.23)

Pt − P REE
t =

t∑
j=2

(
b

ã

)j

(au0) =
t−1∑
j=1

(
b

ã

)j

(bu0) ∀t > 1 (A.24)

where the last equality uses the fact that in normal times ã = a.

From Proposition 2, we know that b
ã

is decreasing in ζ, ζ̃, ϕ, τI

τU
and τ̃I

τ̃U
. Moreover,

from (13) we know that b is also decreasing in ζ, which is itself increasing in ϕ and τI

τU
.

Combining these results with (A.22) and (A.24), we obtain the comparative statics in

Proposition 3 ∀t > 1. In particular, when the equilibrium is stable these comparative
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statics also hold in the limit as t → ∞, as the economy approaches the new steady

state.

A.4 Proof of Proposition 4: Time-varying Extrapolation

Before the displacement is announced, the degree of extrapolation in normal times is

simply given by:

θ = 1 + 1
ζ̃

= 1 +
(

1
ϕ

− 1
)

VI

VU

(A.25)

Following a displacement, inverting equation (55) yields:

ũt−1 + w̃t−1 = 1
ãt−1

(
∆Pt−1 −

(
P̃t−1|t−2 − Pt−2

))
(A.26)

Using the fact that EU,t[DT ] = EU,t−1[DT ]+ũt+w̃t, and also that ∆Pt−1−P̃t−1|t−2+Pt−2 =

Pt−1 − P̃t−1|t−2, we get:

EU,t[DT ] = EU,t−1[DT ] + 1
ãt−1

(
Pt−1 − P̃t−1|t−2

)
(A.27)

where 1
ãt−1

= 1 + 1
ζ̃t−1

is time-varying (as discussed in the main text), and captures the

time-varying strength with which partial equilibrium thinkers extrapolate recent price

changes.

A.5 Proof of Proposition 5: Time-varying Strength of the Feed-

back Effect

In (61), we showed that, following a displacement, the strength of the feedback effect

takes the following form:

bt−1

ãt−1
=
(

1
1 + ζt−1

)(
1 + 1

ζ̃t−1

)
(A.28)

which directly shows that the feedback effect is decreasing in both the true and perceived

informational edges. The true and perceived informational edges were derived in (44)
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and (53) as follows:

ζt =
(

ϕ

1 − ϕ

)(
VU + ((t − 1)τs + τ0)−1

VI + (tτs + τ0)−1

)
(A.29)

ζ̃t−1 =
(

ϕ

1 − ϕ

)(
VU + (τ0)−1

VI + ((t − 1)τs + τ0)−1

)
(A.30)

Since both these quantities are time-varying, it follows that (A.28) is also time-varying.

Taking the limit of this expression, we find that:

lim
t→∞

ζt =
(

ϕ

1 − ϕ

)(
VU

VI

)
(A.31)

lim
t→∞

ζ̃t−1 =
(

ϕ

1 − ϕ

)(
VU + (τ0)−1

VI

)
(A.32)

and hence that limt→∞ ζt < limt→∞ ζ̃t−1 which directly implies limt→∞
bt−1
ãt−1

< 1

B Derivations

B.1 Rational Expectations

When uninformed traders have rational expectations, they perfectly understand what

generates price changes they observe. In turn, this requires them to understand other

traders’ beliefs, and actions.

Formally, rational agents think that in period t − 1 informed agents update their

beliefs with the new fundamental information they receive, ũt−1:27,28

ẼI,t−1[DT ] = ẼI,t−2[DT ] + ũt−1 (B.1)

27Here we still denote with a ·̃ uninformed traders’ beliefs about a variable, and in this case ũt−1
is uninformed traders’ beliefs about the fundamental shock that hit the economy in period t − 1, and
which uninformed traders wish to extract from past prices.

28The use of t − 1 subscripts instead of t is to highlight that uninformed agents learn information
from past prices, so that in period t they must understand what generated the price in period t − 1, as
this is the price they are extracting new information from.
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ṼI,t−1[DT ] =
(

β2

1 − β2

)
σ2

u ≡ ṼI = VI (B.2)

where the last equality highlights how uninformed traders are correctly specified about

informed traders’ posterior variance, as can be seen from comparing (B.2) to (20).

Moreover, they also understand that all other uninformed agents learn information

from past prices. Specifically, they know that in period t − 1 uninformed traders update

their beliefs by ũt−2, which is the same signal that they extract from the past price they

observe in that period, Pt−2:

ẼU,t−1[DT ] = ẼU,t−2[DT ] + ũt−2 (B.3)

ṼU,t−1[DT ] =
(

1
1 − β2

)
σ2

u ≡ ṼU = VU (B.4)

where the last equality highlights how uninformed traders are correctly specified about

other uninformed traders’ posterior variance, as can be seen from comparing (B.4) to

(22).

To be clear on notation, notice that, while ũt−2 is in uninformed traders’ information

set starting in period t − 1, ũt−1 is the signal that uninformed traders are extracting

from prices in period t.

Rational agents then think that the equilibrium price in period t − 1 is generated by

the following market clearing condition:

ϕ

(
EU,t−2[DT ] + ũt−1 − Pt−1

AṼI

)
︸ ︷︷ ︸

X̃I,t−1

+(1 − ϕ)
(
EU,t−2[DT ] + ũt−2 − Pt−1

AṼU

)
︸ ︷︷ ︸

X̃U,t−1

= Z (B.5)

which leads to the following price function:

Pt−1 = ã (EU,t−2[DT ] + ũt−1) + b̃ (EU,t−2[DT ] + ũt−2) − c̃ (B.6)

where: ã ≡ ϕτ̃I

ϕτ̃I+(1−ϕ)τ̃U
= ζ̃

1+ζ̃
, b̃ ≡ (1−ϕ)τ̃U

ϕτ̃I+(1−ϕ)τ̃U
= 1

1+ζ̃
and c̃ ≡ AZ

ϕτ̃I+(1−ϕ)τ̃U
. Since we saw

in (B.2) and (B.4) that uninformed traders are have correct beliefs about the posterior
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variances of both informed and uninformed traders, it follows that ã = a, b̃ = b and

c̃ = c, where a, b and c are the coefficients in the true price function in (11).

Taking first differences of (B.2) and (B.4), substituting them into the first difference

of (B.6), and using the fact that ã = a, b̃ = b and c̃ = c, we find that rational traders un-

derstand that price changes reflect two sources of price variation, which capture changes

in beliefs of both informed and uninformed traders:

∆Pt−1 = a ũt−1︸ ︷︷ ︸
instantaneous response

+ b ũt−2︸ ︷︷ ︸
lagged response

(B.7)

They then invert this mapping to extract the following signal from past prices:

ũt−1 =
(1

a

)
∆Pt−1 −

(
b

a

)
ũt−2 (B.8)

Lagging the true price function (15), and substituting it into (B.8), we then find that

uninformed traders are able to extract the right information from past prices:

ũt−1 = ut−1 (B.9)

B.2 Displacements, Bubbles and Crashes

In normal times, the strength of the feedback effect is given by:

b

ã
=
(

1
1 + ζ

)(
1 + 1

ζ̃

)
= 1

ζ
< 1 (B.10)

where the second equality follows from the fact that in normal times:

ζ = ζ̃ =
(

ϕ

1 − ϕ

)
VU

VI

(B.11)

and the last inequality in (B.10) follows from the fact that the economy must be in a

stable region in normal times.
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Following a displacement, the strength of the feedback effect is given by:

bt

ãt

=
(

1
1 + ζt

)(
1 + 1

ζ̃t

)
(B.12)

where in t = 0:

ζ0 = ζ̃0 =
(

ϕ

1 − ϕ

)
VU + (τ0)−1

VI + (τ0)−1 (B.13)

and in t > 0:

ζt =
(

ϕ

1 − ϕ

)
VU + ((t − 1)τs + τ0)−1

VI + (tτs + τ0)−1 (B.14)

ζ̃t =
(

ϕ

1 − ϕ

)
VU + (τ0)−1

VI + (tτs + τ0)−1 (B.15)

Combining (B.12) and (B.13), we find that in period t = 0 the strength of the

feedback effect is given by:

b0

ã0
= 1

ζ0
(B.16)

= 1
ζ

+
(

1
ζ0

− 1
ζ

)
(B.17)

= b

ã
+
(

1 − ϕ

ϕ

)(
VU − VI

VU

)
(τ0)−1

VU + (τ0)−1 (B.18)

where the second equality simply adds and subtracts the strength of the feedback effect

in normal times b
ã

= 1
ζ
, and the last equality uses the expressions for ζ and ζ0 in (B.11)

and (B.13) above, and rearranges.

Ceteris paribus, for the strength of the feedback effect to enter the unstable region

we need the uncertainty associated with the displacement (τ0)−1 to be high enough:

b0

ã0
> 1 ⇐⇒ (τ0)−1 >

(
1 − b

ã

) (
ϕ

1−ϕ

) (
VU

VU −VI

)
VU

1 −
(
1 − b

ã

) (
ϕ

1−ϕ

) (
VU

VU −VI

) (B.19)

where(1 − b/̃a) > 0 from (B.10). In the long run, as uncertainty about the displacement
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is resolved, we have that:

ζ∞ ≡ lim
t→∞

ζt =
(

ϕ

1 − ϕ

)
VU

VI

= ζ (B.20)

ζ̃∞ ≡ lim
t→∞

ζ̃t =
(

ϕ

1 − ϕ

)
VU + (τ0)−1

VI

> ζ̃ (B.21)

Combining these expressions:

lim
t→∞

bt

ãt

=
(

1
1 + ζ∞

)(
1 + 1

ζ̃∞

)
<

b

ã
< 1 (B.22)

which shows that in the long run the economy always returns to a stable region, with

a steady state feedback effect that is weaker than the original normal times feedback

effect. In the main text we show that when the strength of the feedback effect evolves

in this way, prices and beliefs are initially non-stationary and accelerate away from

fundamentals in a convex way. As the feedback effect then weakens towards its new

steady state level, it eventually returns into a stable region, leading uninformed agents’

beliefs to be disappointed, the bubble to burst, and prices and beliefs to converge back

towards fundamentals.

B.3 Bursting the Bubble

To see how these forces play a joint role in bursting the bubble, and how the reversal can

only occur once the economy returns to a stable region, we can substitute the definitions

of (Pt−1 − Pt−1|t−2) and (Pt−1 − P̃t−1|t−2) into (60), to find that beliefs evolve as follows:

ũt−1 + w̃t−1 =
(

at−1

ãt−1

)
(EI,t−1[DT ] − E0[DT ])

−
(

1 − bt−1

ãt−1

)
(EU,t−1[DT ] − E0[DT ]) + 1

ãt−1
(c̃t−1 − ct−1) (B.23)

where E0[DT ] = D̄ + µ0 is agents’ unconditional prior belief when the displacement is

announced. For the bubble to burst, we need ũt−1 + w̃t−1 to eventually turn negative.
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If we consider a one-off positive shock, such that EI,t−1[DT ] = EI,1[DT ] > E0[DT ] for

all t ≥ 1, equation (B.23) makes clear that as long as the economy is in a unstable

region and bt−1
ãt−1

> 1, PET agents continue to extract positive information from prices,

and therefore become increasingly optimistic.29 In other words, when the economy is

in an unstable region, the lagged response of uninformed agents always raises prices

by more than what uninformed agents would expect from changes in confidence alone.

On the other hand, this is no longer the case once the economy returns to a stable

region and the feedback between outcomes and beliefs runs out of steam. At the peak

of the bubble uninformed agents’ beliefs vastly exceed fundamentals, and the term in

(EU,t−1[DT ] − E0[DT ]) dominates in determining the sign of the news that uninformed

agents extract from past prices in (B.23). Once the economy returns into a stable region

and bt−1
ãt−1

< 1, PET agents expect higher price rises than the ones they observe. As their

beliefs are disappointed, they become more pessimistic (ũt−1 + w̃t−1 < 0) and the bubble

bursts.

B.4 Adding Speculative Motives

To model speculative motives, we let agents have Constant Absolute Risk Aversion

(CARA) utility over next period wealth.

When traders have these preferences, their asset demand function conditional on

their beliefs is given by:

Xi,t = Ei,t[Πt+1] − Pt

AVi,t[Πt+1]
(B.24)

where the expected next period payoff is given by:

Πt+1 ≡ βPt+1 + (1 − β)Dt (B.25)

and simply reflects that with probability β the asset is alive next period and worth Pt+1,

and with probability (1 − β) the asset dies and pays out its terminal dividend Dt.

29Notice that the last term in c̃t−1 − ct−1 > 0, as uninformed traders under-estimate the aggregate
risk bearing capacity following a displacement.
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Since agents are forecasting prices, which are endogenous outcomes, they now need

to forecast other agents’ future beliefs. Therefore, in solving the model with speculative

motives, we need to specify agents’ higher order beliefs. While partial equilibrium think-

ing helps to pin down uninformed agents’ higher order beliefs (they simply assume that

all agents trade on their private information alone, and that this is common knowledge),

it allows for more flexibility about informed agents’ higher order beliefs.

We consider two cases. In Section B.4.1 we let informed agents be “PET-aware,” so

that they perfectly understand uninformed agents’ biased beliefs. In Section B.4.2, we

consider a case where informed agents are “PET-unaware” and mistakenly believe that

all other agents are rational, and that uninformed agents extract the right information

from prices. This lines up with the distinction in practical asset management between

investors who concentrate on the gap between market prices and their estimates of

fundamentals, and those who also think about the behavioral biases in the market.

B.4.1 “PET−aware” Speculation

In solving the model, we proceed in the same three steps we used in the baseline model.

First, we solve for the true price function which generates the prices agents observe.

Second, we specify the mapping that uninformed agents use to extract information from

prices. Third, we solve the model forward, starting from the steady state in normal times.

The one key difference to our baseline setup is that since all agents are now forecasting

an endogenous outcome, we now need to solve for the first two steps by backwards

induction. To do so, we use the new steady state after the uncertainty surrounding the

displacement has been resolved as our terminal point.

Step 1: True Market Clearing Price Function. To determine the true market

clearing condition which determines the prices agents observe, we know that in period t

all informed agent trade on the whole history of signals they have received up until that

date ({uj}t
j=0, {sj}t

j=1) and all uninformed agents trade on the information they have

learnt from past prices.
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We define Dt ≡ D̄+∑t
j=1 ut and Wt ≡ τ0

tτs+τ0
µ0 + τs

tτs+τ0

∑t
j=1 s̃t to be informed agents’

period t belief of normal times shocks and of the displacement respectively, and D̃t and

W̃t are uninformed agents’ beliefs about these quantities.

We can then guess that the true price function takes the following form:

Pt = At(Dt + Wt) + Bt(D̃t−1 + W̃t−1) − Kt (B.26)

where D̃t−1 + W̃t−1 is the information that uninformed agents extract from past prices,

and At, Bt and Kt are time-varying and deterministic coefficients that depend on the

properties of the environment.

To verify our guess, notice that if informed agents are aware of uninformed agents’

bias, their beliefs about next period payoff are given by:

EI,t[Πt+1] = (1 − β + βAt+1) (Dt + Wt)︸ ︷︷ ︸
EI,t[D̃t+1+W̃t+1]

+βBt+1

(
Pt − B̃t(D̄ + µ0) + K̃t

Ãt

)
︸ ︷︷ ︸

EI,t[D̃t+W̃t]

−βKt+1

(B.27)

VI,t[Πt+1] =VI,t

[
βAt+1ut+1 + βAt+1

τs

(t + 1)τs + τ0
(ω + ϵt+1) + (1 − β)ω

]
(B.28)

= (βAt+1)2 σ2
u +

(
βAt+1

(
τs

(t + 1)τs + τ0

))2

(τs)−1

+
(

1 − β + βAt+1

(
τs

(t + 1)τs + τ0

))2

(tτs + τ0)−1 = VI,t

(B.29)

where the variance term captures how the uncertain components of expected profits in

equation B.25 are (i) the future dividend component ut+1 ; (ii) the signal informed agents

receive in period t + 1, st+1 = ω + ϵt+1; and (iii) the displacement shock ω.

Turning to uninformed agents’ beliefs:

EU,t[Πt+1] = (1 − β + βÃt+1)(D̃t−1 + W̃t−1) + βB̃t+1(D̄ + µ0) − βK̃t+1 (B.30)
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VU,t[Πt+1] =VU,t

[
βÃt+1

(
ut+1 + ut + 2τs

(t + 1)τs + τ0
ω + τs

(t + 1)τs + τ0
(ϵt+1 + ϵt)

)
+ (1 − β)(ut + ω)

]

=(βÃt+1)2σ2
u + (1 − β + βÃt+1)2σ2

u

+
(

1 − β + βÃt+1
2τs

(t + 1)τs

)2

((t − 1)τs + τ0)−1

+ 2
(

τsβÃt+1

(t + 1)τs + τ0

)2

(τs)−1 = VU,t

(B.31)

where the first equality captures that in period t uninformed traders are uncertain about

ut, ut+1, ϵt and ϵt+1 and ω, and the last equality simply simplifies notation to highlight

that VU,t is deterministic and time-varying.

Given these beliefs, the true market clearing condition which generates the prices

agents observe is given by:

ϕ

(
EI,t[Πt+1] − Pt

AVI,t[Πt+1]

)
+ (1 − ϕ)

(
EU,t[Πt+1] − Pt

AVU,t[Πt+1]

)
= Z (B.32)

and the resulting market clearing price function is given by:

Pt =
(

ϕVU,t

ϕVU,t + (1 − ϕ)VI,t

)
EI,t[Πt+1]

+
(

(1 − ϕ)VI,t

ϕVU,t + (1 − ϕ)VI,t

)
EU,t[Πt+1]

− AZVI,tVU,t

ϕVU,t + (1 − ϕ)VI,t

(B.33)

Since (B.27), (B.29), (B.30) and (B.31) show that EI,t[Πt+1] is linear in (Dt+Wt) and

(D̃t−1 + W̃t−1), EU,t[Πt+1] is linear in (D̃t−1 + W̃t−1), and that V[Πt+1] and V[Πt+1] are

deterministic, we see that the true price function does indeed take the form in (B.26).

Substituting (B.27), (B.29), (B.30) and (B.31) into (B.33), and matching coefficients,
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yields:

At =

 ϕ
VI,t

ϕ
VI,t

(
1 − β Bt+1

Ãt

)
+ (1−ϕ)

VU,t

 (1 − β + βAt+1) (B.34)

Bt =

 1−ϕ
VU,t

ϕ
VI,t

(
1 − β Bt+1

Ãt

)
+ (1−ϕ)

VU,t

 (1 − β + βÃt+1) (B.35)

Kt =

 ϕ
VI,t

ϕ
VI,t

(
1 − β Bt+1

Ãt

)
+ (1−ϕ)

VU,t

(βKt+1 + β
Bt+1

Ãt

(
−B̃t(D̄ + µ0) + K̃t

))

+

 1−ϕ
VU,t

ϕ
VI,t

(
1 − β Bt+1

Ãt

)
+ (1−ϕ)

VU,t

(−βB̃t+1(D̄ + µ0) + βK̃t+1
)

+ AZ
ϕ

VI,t

(
1 − β Bt+1

Ãt

)
+ (1−ϕ)

VU,t

(B.36)

These expressions give recursive equations for the coefficients which determine equi-

librium prices at each point in time. To solve for this mapping, we then need to solve

the model by backward induction. We can do this by using the new steady state after

the uncertainty generated by the displacement is resolved as the end point. Specifically,

the new steady state is given by:

A′ =

 ϕ
V′

I

ϕ
V′

I

(
1 − β B′

Ã′

)
+ 1−ϕ

V′
U

 (1 − β + βA′) (B.37)

B′ =

 1−ϕ
V′

U

ϕ
V′

I

(
1 − β B′

Ã′

)
+ 1−ϕ

V′
U

 (1 − β + βÃ′) (B.38)

K ′ =

 ϕ
V′

I

ϕ
V′

I

(
1 − β B′

Ã′

)
+ 1−ϕ

V′
U

(βK ′ + β
B′

Ã′

(
−B̃′(D̄ + µ0) + K̃ ′

))
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+

 1−ϕ
V′

U

ϕ
V′

I

(
1 − β B′

Ã′

)
+ 1−ϕ

V′
U

(−βB̃′(D̄ + µ0) + βK̃ ′
)

+ AZ
ϕ
V′

I

(
1 − β B′

Ã′

)
+ 1−ϕ

V′
U

(B.39)

where Ã′, B̃′ and K̃ ′ are the coefficients of the mapping PET agents use to extract

information from prices in the new steady state, and which we solve for in (B.52), (B.53)

and (B.54) in the next section respectively. Moreover, V′
I and V′

U are the variances of

informed and uninformed agents in the new steady state when uncertainty is resolved:

V′
I = lim

t→∞
VI,t = (βA′)2σ2

u (B.40)

V′
U = lim

t→∞
VU,t = (βÃ′)2σ2

u + (1 − β + βÃ′)2σ2
u (B.41)

Using this steady state as our end point, we can then solve for the true price function

which generates the prices agents observe by backward induction.

Step 2: Mapping to Infer Information from Prices. Just as in the baseline model

without speculation, PET agents think that in period t informed agents trade on the

information they have received so far, {uj}t
j=1, {sj}t

j=1, and that uninformed agents only

trade on their prior beliefs. Therefore, we can guess as before their beliefs about the

equilibrium price function takes the following form:

Pt = Ãt(D̃t + W̃t) + B̃t(D̄ + µ0) − K̃t (B.42)

where Ãt, B̃t and K̃t are time-varying and deterministic coefficients.

To verify that this is the price function which would arise in equilibrium if agents

traded on their own private information alone, notice that, given this price function,

informed agents’ beliefs would take the following form:

ẼI,t[Πt+1] =ẼI,t[β
(
Ãt+1(D̃t+1 + W̃t+1) + B̃t+1(D̄ + µ0) − K̃t+1

)
+ (1 − β)(D̃t + ω̃)]
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=(1 − β + βÃt+1)(D̃t + W̃t) + βB̃t+1(D̄ + µ0) − βK̃t+1 (B.43)

ṼI,t[Πt+1] =ṼI,t

[
βÃt+1ũt+1 + βÃt+1

(
τs

(t + 1)τs + τ0

)
(ω̃ + ϵ̃t+1) + (1 − β)ω̃

]

=
(
βÃt+1

)2
σ2

u +
(

βÃt+1

(
τs

(t + 1)τs + τ0

))2

(τs)−1

+
(

1 − β + βÃt+1

(
τs

(t + 1)τs + τ0

))2

(tτs + τ0)−1 = ṼI,t

(B.44)

where ṼI,t is time-varying and deterministic. Turning to PET agents’ beliefs of other

uninformed agents’ beliefs:

ẼU,t[Πt+1] = (1 − β + βÃt+1 + βB̃t+1)(D̄ + µ0) − βK̃t+1 (B.45)

ṼU,t[Πt+1] =ṼI,t

[
βÃt+1(ũt+1 + ũt) + βÃt+1

(
τs

(t + 1)τs + τ0

)
(2ω̃ + ϵ̃t + ϵ̃t+1) + (1 − β)(ũt + ω̃)

]

=
(
βÃt+1

)2
σ2

u +
(
1 − β + βÃt+1

)2
σ2

u + 2
(

βÃt+1

(
τs

(t + 1)τs + τ0

))2

(τs)−1

+
(

1 − β + 2βÃt+1

(
τs

(t + 1)τs + τ0

))2

(τ0)−1 = ṼU,t (B.46)

where VU,t is time-varying and deterministic.30

Given these beliefs, the market clearing condition which PET agents think is gener-

ating the price that they observe is given by:

ϕ

(
ẼI,t[Πt+1] − Pt

AṼI,t[Πt+1]

)
+ (1 − ϕ)

(
ẼU,t[Πt+1] − Pt

AṼU,t[Πt+1]

)
= Z (B.47)

30In solving the model we assume that partial equilibrium thinkers believe other uninformed traders
think past fundamental shocks simply did not realize - since they did not receive private information
about them, they think they did not happen. Our results are robust to alternative assumptions about
traders’ higher order beliefs. For example, we could just as easily have assumed that PET traders
believe that other uninformed traders think no news ever arrives, and having them trade on fixed prior
beliefs even following a displacement.
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and the resulting market clearing price function is given by:

Pt =
(

ϕṼU,t

ϕṼU,t + (1 − ϕ)ṼI,t

)
ẼI,t[Πt+1]

+
(

(1 − ϕ)ṼI,t

ϕṼU,t + (1 − ϕ)ṼI,t

)
ẼU,t[Πt+1]

− AZṼI,tṼU,t

ϕṼU,t + (1 − ϕ)ṼI,t

(B.48)

Since (B.43), (B.44), (B.45) and (B.46) show that ẼI,t[Πt+1] is linear in (D̃t + W̃t) and

(D̄ + µ0), that ẼU,t[Πt+1] is linear in (D̄ + µ0) and that ṼI,t+1[Πt+1] and ṼU,t+1[Πt+1]

are deterministic, we see that given PET agents’ beliefs about other agents, the price

function which generates the prices they observe does indeed take the form in (B.42).

Substituting (B.43), (B.44), (B.45) and (B.46) into (B.48), and matching coefficients

yields:

Ãt =
 ϕ

ṼI,t

ϕ
ṼI,t

+ 1−ϕ
ṼU,t

 (1 − β + βÃt+1) (B.49)

B̃t =
 ϕ

ṼI,t

ϕ
ṼI,t

+ 1−ϕ
ṼU,t

 βB̃t+1 +
 1−ϕ

ṼU,t

ϕ
ṼI,t

+ 1−ϕ
ṼU,t

 (1 − β + βÃt+1 + βB̃t+1) (B.50)

K̃t =
 ϕ

ṼI,t

ϕ
ṼI,t

+ 1−ϕ
ṼU,t

 βK̃t+1 +
 1−ϕ

ṼU,t

ϕ
ṼI,t

+ 1−ϕ
ṼU,t

 βK̃t+1 − AZ
ϕ

ṼI,t
+ 1−ϕ

ṼU,t

(B.51)

These expressions give recursive equations for the coefficients with determine equi-

librium prices at each point in time. Therefore, to solve for this mapping, we need to

solve the model by backward induction. We can do this by using the new steady state

after the uncertainty generated by the displacement is resolved. Specifically, uninformed

agents think that the new steady state is given by:

Ã′ =
 ϕ

Ṽ′
I

ϕ
Ṽ′

I

+ 1−ϕ
Ṽ′

U

 (1 − β + βÃ′) (B.52)
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B̃′ =
 ϕ

Ṽ′
I

ϕ
Ṽ′

I

+ 1−ϕ
Ṽ′

U

 βB̃′ +
 1−ϕ

Ṽ′
U

ϕ
Ṽ′

I

+ 1−ϕ
Ṽ′

U

 (1 − β + βÃ′ + βB̃′) (B.53)

K̃ ′ =
 ϕ

Ṽ′
I

ϕ
Ṽ′

I

+ 1−ϕ
Ṽ′

U

 βK̃ ′ +
 1−ϕ

Ṽ′
U

ϕ
Ṽ′

I

+ 1−ϕ
Ṽ′

U

 βK̃ − AZ
ϕ
Ṽ′

I

+ 1−ϕ
Ṽ′

U

(B.54)

where Ã′, B̃′ and K̃ ′ are PET agents’ beliefs of the coefficients of the price function in

the new steady state after the uncertainty associated with the displacement is resolved,

and Ṽ′
I and Ṽ′

U are PET agents’ beliefs of the variance of informed and uninformed

agents in the new steady state when uncertainty is resolved:

Ṽ ′
I = lim

t→∞
ṼI,t = (βÃ)2σ2

u (B.55)

Ṽ ′
U = lim

t→∞
ṼU,t = (βÃ)2σ2

u + (1 − β + βÃ)2σ2
u + (1 − β)2(τ0)−1 (B.56)

Using this steady state as our end point, we can then solve for the mapping uninformed

agents use to extract information from prices by backward induction.

Given this mapping, uninformed agents extract the following information from prices:

D̃t−1 + W̃t−1 = Pt−1 − B̃t−1(D̄ + µ0) + K̃t−1

Ãt−1
(B.57)

Or, given their information set in period t, they extract the following new information

from the unexpected price change they observe in period t − 1:

ũt−1 + w̃t−1 = 1
Ãt−1

(Pt−1 − EU,t−1[Pt−1]) (B.58)

where w̃t−1 = W̃t−1 − W̃t−2. This verifies our claim in the text that PET agents extrap-

olate unexpected price changes even when we allow for speculative motives.

Step 3: Solving the Model Recursively. We solve for the normal times steady

state before the displacement is announced by solving the system of equations in (B.52),
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(B.53), (B.54) and (B.37), (B.38), (B.39), using the following normal times variances:

ṼI =(βÃ)2σ2
u (B.59)

ṼU =(βÃ)2σ2
u + (1 − β + βÃ)2σ2

u (B.60)

VI =(βA)2σ2
u (B.61)

VU =(βÃ)2σ2
u + (1 − β + βÃ)2σ2

u (B.62)

Starting from the normal times steady state, we can then simulate the equilibrium

path of our economy forward for a given set of signals.

B.4.2 “PET−unaware” Speculation - Mistakenly Rational

If informed agents are not omniscient, and instead mistakenly believe that the world is

rational, and that uninformed agents are able to recover the correct information form

prices, then their posterior beliefs in (B.27) should be replaced by:

EI,t[Πt+1] = (1 − β + βAt+1)(Dt + Wt) + βBt+1(Dt + Wt) − βKt+1 (B.63)

The posterior variance is identical since, as in the “PET−aware” case, Informed agents

are certain about the beliefs that Uninformed agents will have next period.

Following the same steps as in Section B.4.1 above, it follows that the equilibrium

price becomes:

Pt = At(Dt + Wt) + Bt(D̃t−1 + W̃t−1) − Kt (B.64)

where:

At =
 ϕ

VI,t

ϕ
VI,t

+ 1−ϕ
VU,t

 (1 − β + βAt+1 + βBt+1) (B.65)

Bt =
 1−ϕ

VU,t

ϕ
VI,t

+ 1−ϕ
VU,t

 (1 − β + βÃt+1) (B.66)
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Kt =
 ϕ

VI,t

ϕ
VI,t

+ 1−ϕ
VU,t

 βKt+1 +
 1−ϕ

VU,t

ϕ
VI,t

+ 1−ϕ
VU,t

(−βB̃t+1(D̄ + µ0) + K̃t+1
)

+ AZ
ϕ

VI,t
+ 1−ϕ

VU,t

(B.67)

Since the mapping used by PET agents to extract information from prices is unchanged

relative to the one in Section B.4.1, we can use this alternative price function to simulate

the path of equilibrium prices and beliefs by following the same steps as in Section B.4.1.

The results of these simulation for prices, beliefs, trading volume and asset demand are

presented in Figure 7.

C Additional Results

C.1 Negative Bubbles

Negative bubbles, defined as episodes of substantial under-valuation, are far less common

than positive bubbles (Barberis 2018). To achieve this asymmetry between positive and

negative bubbles, models of bubbles generally rely on short-sale constraints (Scheinkman

and Xiong 2003, Harrison and Kreps 1978): when the asset becomes too under-valued,

over-pessimistic agents cannot take on extreme short positions, thus limiting the extent

to which their beliefs get incorporated into prices and dampening the extent of under-

valuation (Daniel et al. 2021).

In our model we abstract from short-sale constraints for simplicity, but negative bub-

bles are still dampened relative to positive bubbles because of the asymmetry inherent

in displacement shocks. Specifically, our notion of displacement leads to changes in

agents’ expectations of both the mean of the fundamental value of the asset, and of the

uncertainty associated with it.

Changes in uncertainty then lead to changes in the risk-premium component, which

initially rises and then gradually decreases as traders start learning about the new shock.

In turn, the declining risk-premium exerts an upwards force on prices. However, partial

equilibrium thinkers under-estimate this upward force, because they over-estimate the
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Figure 7: Bubbles and crashes with “PET-aware” and “PET-unaware” speculators.
Starting from a normal times steady state, a displacement ω ∼ N(µ0, τ−1

0 ) is announced in period
t = 0. Informed agents then receive a signal st = ω + ϵt in each period, where ϵ1 > 0 and ϵt = 0 ∀t > 1.
This figure compares the path of equilibrium prices, uninformed agents’ beliefs, trading volume and
agents’ positions in the risky asset under rational expectations, partial equilibrium thinking, “PET-
aware” speculation, and “PET-unaware” speculation. “PET-aware” speculation amplifies the bubble
relative to the case with no speculative motives, while “PET-unaware” speculation arbitrages the bubble
away.
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risk-premium component.31

The discrepancy between the true and the perceived risk premium is then attributed

to good news, regardless of the sign of the shock. This amplifies positive shocks, and in-

31Partial equilibrium thinkers think that other uninformed traders are not learning over time. So
they effectively think that uninformed traders face greater uncertainty than they do. This greater
uncertainty then translates into a higher perceived aggregate risk-premium.
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stead dampens or can even reverse the negative cash-flow shock associated with negative

bubbles.32 Figure 8 shows this asymmetry by simulating the impulse response function

following a positive and negative cash flow shock of the same absolute value.

Figure 8: Asymmetry between Positive and Negative Bubbles. Starting from a normal times
steady state, a displacement ω ∼ N(µ0, τ−1

0 ) is announced in period t = 0. Informed agents then receive
a signal st = ω + ϵt with ϵt ∼ N(0, τ−1

s ) each period, where ϵ1 > 0 and ϵt = 0 ∀t > 1. This figure
compares the path of equilibrium prices for positive bubbles (µ0 > 0, left panel) and negative bubbles
(µ0 < 0, right panel). For a given size shock in absolute value, negative bubbles are dampened relative
to positive bubbles.
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C.2 Slow Boom, and Faster Crash

In the baseline model presented in the core of the paper, we assumed that the precision

of each incremental piece of news was constant. Here, we check the robustness of our

results if we instead assume that signals are very noisy at first, but become more precise

after a certain amount of time. Specifically, we simulate a situation where for the first

30 periods, signals are of precision τs, and are of precision τ ′
s > τs afterwards. Figure

9 shows how a bubble and a crash still take place, but the crash is accelerated by the

increased precision of signals. Intuitively, this is simply because a high τ ′
s makes the

feedback effect decrease more rapidly with time.

32If we mute this risk-premium component, for example by setting the supply of the risky asset to
zero, the bubble goes back to being symmetric.
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Figure 9: Asymmetric bubbles and crashes. Starting from a normal times steady state, a
displacement ω ∼ N(µ0, τ−1

0 ) is announced in period t = 0. Informed agents then receive a signal
st = ω + ϵt with ϵ ∼ N(0, τ−1

s,t ) each period, where ϵ1 > 0 and ϵt = 0 ∀t > 1. Moreover, τs,t = τs for
t ≤ 30 and τs,t = τ ′

s > τs for t > 30, which reflects that information is revealed at a faster rate once
the bubble bursts. The left panel illustrates the evolution of the strength of the feedback effect. The
right panel illustrates the evolution of equilibrium prices, which now exhibit a slower boom and a faster
crash.
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C.3 Misunderstanding the Frequency of Information Arrival

By assuming that informed agents receive new information in each period following a

displacement, we are implicitly assuming that uninformed agents understand the fre-

quency with which informed agents receive new information. However, if we change

the frequency of information arrival, the true confidence of informed agents becomes

decoupled from uninformed agents’ perception of it.

In our model, following a displacement, uninformed agents observe a price change

in each period, and they attribute each price change to new information. Regardless

of the frequency of information arrival, having observed t price changes after t periods,

uninformed agents’ perception of informed agents’ confidence is given by:

τ̃I,t =
(
VI,0 + (tτs + τ0)−1

)−1
(C.1)

If informed agents receive news in each period, then τ̃I,t = τI,t. Suppose instead that

after t period, informed agents have received only nt < t signals. Their true confidence
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is now given by:

τI,t =
(
VI,0 + (ntτs + τ0)−1

)−1
< τ̃I,t (C.2)

With this information structure, informed agents need to receive only a finite number

of signals for the bubble to burst. Let n∞ be the total number of signals informed agents

receive about the displacement over the whole lifetime of the asset. Long run stability

then requires:

n∞ > n̄ (C.3)

where n̄ = 1
τs

(
1

VI,0(ζ̃∞ζ0−1) − τ0

)
, and ζ̃∞ = limt→∞ ζ̃t. This implies that bubbles may

burst even if the true confidence of informed agents is lower than the true confidence

of uninformed agents. This is not the case with models of constant price extrapolation,

which instead rely on changes in the true relative confidence of informed and uninformed

agents in order to generate bubbles and crashes.

To illustrate this point, Figure 10 shows the response of the economy if informed

agents receive a single signal in period t = 1, and then receive no further information

about the displacement thereafter, so that n∞ = 1. When this is the case, the confidence

of uninformed agents rises relative to the confidence of uninformed agents, as shown

in the top left panel of Figure 10. However, even though the influence on prices of

uninformed agents’ biased beliefs rises over time, the economy can still return to a stable

region because the strength with which PET agents extrapolate past prices falls over

time. Intuitively, PET agents still attribute any price change they observe to additional

news about the displacement, and thus think that informed agents’ edge is rising over

time. Comparing the path of equilibrium prices in the bottom right panel of Figure

10 to the one in Figure 5 we see that when informed agents receive a single shock, the

bubble is much more accentuated and takes much longer to die out as the market spends

more time in the unstable region. However, the key take-away is that a time-varying

extrapolation coefficient allows for bubbles and endogenous crashes that are not driven

by changes in agents’ relative confidence levels, which would instead be necessary with

constant price-extrapolation.
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Figure 10: Response of the economy when informed agents receive a single signal in
period t = 1, and no further information thereafter. Starting from a normal times steady
state, a displacement ω ∼ N(µ0, τ−1

0 ) is announced in period t = 0, and then informed agents receive a
single signal s1 = ω + ϵ1 with ϵ1 > 0 and no more signals thereafter. Panels (a) and (b) show how the
components of the feedback effect vary over time given this information structure, and Panels (c) and
(d) show the evolution of the strength of the feedback effect and of equilibrium prices. Even though b
rises over time, the degree of extrapolation still falls after its initial rise, thus allowing the strength of
the feedback effect to return to a stable region (b/̃a < 1). Panel (d) shows that the bubble is much more
accentuated than the one in Figure 5, as the economy spends longer in the unstable region.
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D Extensions

D.1 Market Orders

In this section we consider the case where uninformed traders submit market orders, so

that they do not condition on current prices in computing their demand for the risky

asset. When this is the case, uninformed traders effectively end up changing the net

supply of the risky asset available to the informed traders. Partial equilibrium thinkers

then think that other uninformed traders hold a constant amount in the risky asset and

that the net supply available to informed traders is fixed, when in reality it is time-

varying as uninformed traders update their demand based on information they learn

from past prices.

While the exact functional form of the results changes, the key intuitions and results

from the baseline model still go through. Specifically, partial equilibrium thinkers still

generate a bias that is decreasing in the perceived informational edge of informed traders,

and it still leads to constant price extrapolation in normal times, and time-varying

extrapolation following a displacement.

D.1.1 Setup

We maintain the same assumptions about the setup and information structure as in the

baseline model. Specifically, in each period t, informed traders receive signals about the

terminal dividend, and uninformed traders can learn information from past prices.

The only difference to our baseline model is that we now assume that uninformed

traders do not condition on current prices, and instead submit market orders, and submit

the following demand for the risky asset (Kyle 1985, Campbell and Kyle 1993, Campbell

2017):

XU,t = EU,t[DT ]
AVU,t[DT ] (D.1)

To solve the model we then take similar steps as in the main text. First, we compute

the true price function, conditional on traders’ posterior beliefs. Second, we compute
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the price function which uninformed traders think is generating the price changes they

observe, and which they use to infer information from prices. Third, we combine these

two mappings and consider the properties of equilibrium outcomes.

We first solve the model in normal times, and then add displacement shocks.

D.1.2 Normal Times

In this section we show that, even when uninformed traders submit market orders, in

normal times: i) partial equilibrium thinkers still extrapolate recent price changes they

observe, ii) the bias is still decreasing in informed traders’ informational edge, and iii)

stationarity still requires the aggregate confidence of informed traders to be greater than

the aggregate confidence of uninformed traders.

Step 1: True Market Clearing Price Function. The market clearing condition

which equates the aggregate demand for the risky asset to the fixed supply is given by:

ϕ

(
EI,t[DT ] − Pt

AVI

)
+ (1 − ϕ)

(
EU,t[DT ]

AVU

)
= Z (D.2)

where VI = VI,t[DT ] and VU = VU,t[DT ] are constant and equal to the normal time

variances we had in the baseline model in (6) and (8), respectively. Solving for Pt, and

using the definition of the aggregate informational edge of informed traders relative to

uninformed traders, ζ =
(

ϕ
1−ϕ

) (
VU

VI

)
, we find that the true price function, conditional

on agents’ posterior beliefs, is given by the following expression:

Pt = EI,t[DT ] + 1
ζt

EU,t[DT ] − AVI

ϕ
Z (D.3)

Taking first differences, and using the fact that ∆EI,t[DT ] = ut and ∆EU,t[DT ] = ũt−1,

we find that price changes reflect changes in beliefs of both informed and uninformed

traders, just as in the baseline model:

∆Pt = ut + 1
ζ

ũt−1 (D.4)
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Step 2: Partial Equilibrium Thinking Mapping. Partial equilibrium thinkers

think that other uninformed traders do not learn information from prices, and trade on

their unconditional prior beliefs. Since uninformed traders learn information from past

prices, we consider the market clearing condition for period t − 1, as this provides us

with an expression for Pt−1, the price they are learning from in period t:

ϕ

(
ẼI,t−1[DT ] − Pt−1

AṼI

)
+ (1 − ϕ)

(
D̄

AṼU

)
= Z (D.5)

Solving for Pt−1, and using the definition of the perceived informational edge as in our

main setup, ζ̃ ≡
(

ϕ
1−ϕ

) (
ṼU

ṼI

)
, we obtain the following perceived price function:

Pt = ẼI,t−1[DT ] + 1
ζ̃

D̄ − AVI

ϕ
Z (D.6)

Taking first differences, and using the fact that ∆ẼI,t−1 = ũt−1, we see that partial

equilibrium thinker still attribute every price change to new information alone, as in the

baseline model:

∆Pt = ũt−1 (D.7)

Partial equilibrium thinkers then trivially invert this mapping to extract the following

signal from past price changes they observe:

ũt−1 = ∆Pt−1 (D.8)

so that they still extrapolate price changes they observe, and the fact that they extrap-

olate one-to-one simply reflects that informed traders’ beliefs are now incorporated into

prices one-to-one.33

33We can compare this to the rational benchmark where uninformed traders understand what gen-
erates the price changes they observe, and use the following mapping in their inference:

ũREE
t−1 [DT ] = ∆Pt−1 − 1

ζ
ũt−2 (D.9)

Comparing (D.8) to (D.9), we notice that, just as in the baseline model, the bias inherent in partial
equilibrium thinking doesn’t come directly from the weight that uninformed traders put on past price
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Step 3: Properties of Equilibrium Outcomes. Combining the results in (D.4)

and (D.8), we find that changes in prices and in beliefs evolve as follows:

∆Pt = ut + 1
ζ

∆Pt−1 (D.10)

ũt−1 = ut−1 + 1
ζ

ũt−2 (D.11)

which closely mirrors the expressions in (32) and (33) in the baseline model. Specifically,

(D.11) shows that the bias in the signal uninformed traders extract from past prices

ũt−1 − ut−1 is still decreasing in informed traders’ informational edge, and the AR(1)

coefficient in (D.10) and (D.11) shows that in normal times stationarity still requires

that the ζ < 1, or that the aggregate confidence of informed traders be greater than the

aggregate confidence of uninformed traders, as in the baseline model.

D.1.3 Displacements

In this section, we introduce displacement shocks as in (39), and show that, even when

uninformed traders can only submit market orders, i) partial equilibrium thinking still

leads to time-varying price extrapolation, and that ii) local stationarity depends on the

true informational edge.

Step 1: True Market Clearing Price Function. The market clearing condition

which equates the aggregate demand for the risky asset to the fixed supply is now given

by:

ϕ

(
EI,t[DT ] − Pt

AVI,t[DT ]

)
+ (1 − ϕ)

(
EU,t[DT ]

AVU,t[DT ]

)
= Z (D.12)

Solving for Pt, and using the the definition of the aggregate informational edge of in-

formed traders relative to uninformed traders: ζt =
(

ϕ
1−ϕ

) (
VU,t[DT ]
VI,t[DT ]

)
, we obtain the true

changes (in this case 1), but rather it comes from the part of the price variation they neglect. Specifically,
rational uninformed traders do condition on past price changes, but the also have a correction term
to account for the fact that part of the price change they observe comes from the lagged response of
all other uninformed traders who are also learning information from prices with a lag, as shown in the
second term in (D.9), which is instead missing in the PET mapping in (D.8).

78



price function, conditional on agents’ posterior beliefs:

Pt = EI,t[DT ] + 1
ζt

EU,t[DT ] − AVI,t[DT ]
ϕ

Z (D.13)

Step 2: Partial Equilibrium Thinking Mapping. Partial equilibrium thinkers

think that other uninformed traders do not learn information from prices, and trade on

their unconditional prior beliefs. Therefore, they think that Pt−1 (the price they are

learning from in period t) is determined from the following market clearing condition:

ϕ

(
ẼI,t−1[DT ] − Pt−1

AṼI,t−1[DT ]

)
+ (1 − ϕ)

(
D̄ + µ0

AṼU,t−1[DT ]

)
= Z (D.14)

Solving for Pt−1, and using the definition of the perceived informational edge as in our

main setup, ζ̃t ≡
(

ϕ
1−ϕ

)(
ṼU,t[DT ]
ṼI,t[DT ]

)
, we obtain the following perceived price function:

Pt−1 = ẼI,t−1[DT ] + 1
ζ̃t−1

(
D̄ + µ0

)
− AZ

ϕ
VI,t−1 (D.15)

where we also define Vi,t−1 ≡ Vi,t−1[DT ] for i ∈ {I, U}, for ease of notation. Taking first

differences, and rearranging, we find that partial equilibrium thinkers still extrapolate

unexpected price changes:

∆EU,t[DT ] = ∆Pt−1 +
(

∆ζ̃t−1

ζ̃t−1ζ̃t−2

)(
D̄ + µ0

)
+ AZ

ϕ
∆VI,t−1 (D.16)

Notice that while the degree of price extrapolation is still 1, this is still not the same as

constant price extrapolation, since the second and third terms in the above expressions

are still time-varying (which wouldn’t be the case with constant price extrapolation).34

34We can once again compare this to the rational benchmark, where uninformed traders take into
account that other uninformed traders are also learning information from past prices. In this case,
uninformed traders’ changes in beliefs would evolve as follows:

∆EU,t[DT ] = ∆Pt−1 +
(

∆ζt−1

ζt−1ζt−2

)
EU,t−1[DT ] − 1

ζt−2
∆EU,t−1[DT ] + AZ

ϕ
∆VI,t−1 (D.17)
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Step 3: Properties of Equilibrium Outcomes. Whether the price function is in a

stationary or non-stationary region now purely depends on the true informational edge:

∆Pt = ∆EI,t[DT ] + 1
ζt

∆EU,t[DT ] + ∆
(

1
ζt

)
EU,t−1[DT ] − ∆VI,t

ϕ
AZ (D.19)

which we can re-write as:

∆Pt = ∆EI,t[DT ] + 1
ζt

∆Pt−1

+ 1
ζt

(
∆ζ̃t−1

ζ̃t−1ζ̃t−2

)(
D̄ + µ0

)
+ ∆

(
1
ζt

)
EU,t−1[DT ]

− AZ

ϕ
∆VI,t + 1

ζt

AZ

ϕ
∆VI,t−1 (D.20)

However, deviations from rationality still depend both on the true and the perceived

informational edges. An intuitive way to see this is to express the difference between

uninformed traders’ beliefs at t and informed traders’ beliefs at t − 1. In the rational

benchmark, that difference is simply 0. Instead, when traders think in partial equilib-

rium, this difference is given by:

EU,t[DT ] − EI,t−1[DT ] = EU,t−1[DT ]
ζt−1

− D̄ + µ0

ζ̃t−1
(D.21)

which depends both on the true and perceived informational edges, as well as past PET

beliefs.

and we can re-write this expression in a way that highlights the source of price variation that partial
equilibrium thinkers neglect:

∆EU,t[DT ] = ∆Pt−1+
(

∆ζt−1

ζt−1ζt−2

)
D̄+

(
∆ζt−1

ζt−1ζt−2

)(
EU,t−1[DT ] −

(
D̄ + µ0

))
− 1

ζt−2
∆EU,t−1︸ ︷︷ ︸

source of price variation PET traders neglect

+AZ

ϕ
∆VI,t−1

(D.18)
As in the baseline framework, this bias is time-varying following a displacement.
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D.2 Partially Revealing Prices

When prices are fully revealing, the extrapolation parameter used by PET agents is

decreasing in informed agents’ informational edge. In this section, we study how the

extrapolation parameter changes if we allow for noise, so that prices are no longer fully

revealing.

D.2.1 Stochastic Supply and Information Structure

To consider the effect of noise on PET agents’ inference problem, we assume that the

supply of the risky asset is stochastic, and given by zt
iid∼ N(Z, σ2

z).

To illustrate the effect of noise in the simplest possible way, we assume that agents

learn about the realization of the supply of the risky asset after two periods. In each

period t, all agents are uncertain about zt−j
iid∼ N(Z, σ2

z) for j ≤ 1 and they know

the realization of zt−h for h ≥ 2. Even though one period lagged prices are partially

revealing, this assumption makes prices fully revealing at further lags, thus simplifying

PET agents’ inference problem.

D.2.2 Inference Problem with Noise

When prices are fully revealing, uninformed agents think they can extract from prices

the exact information that informed agents received in the previous period. This is no

longer true when prices are partially revealing. When this is the case uninformed agents

can only infer a noisy signal of fundamentals from prices.

Specifically, in normal times, uninformed agents think that prices take the following

form:

Pt−1 = ã
(
ẼI,t−2[DT ] + ũt−1

)
+ b̃D̄ − c̃zt−1 (D.22)

where ã = ϕτ̃I

ϕτ̃I+(1−ϕ)τ̃U
, b̃ = (1−ϕ)τ̃U

ϕτ̃I+(1−ϕ)τ̃U
and c̃ = A

ϕτ̃I+(1−ϕ)τ̃U
. Since prices are fully

revealing in period t − 2, but they are partially revealing in period t − 1, uninformed
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agents extract the following noisy signal from prices:35

Pt−1 − ãD̃t−2 − b̃D̄ + c̃Z

ã
= ũt−1 − c̃

ã
(zt−1 − Z) (D.23)

and we can re-write this more simply as:

(1
ã

)
(Pt−1 − Et−1[Pt−1]) = ũt−1 − c̃

ã
(zt−1 − Z) (D.24)

This shows that uninformed agents are now uncertain as to whether the unexpected

price change they observe is due to new information, or to changes in the stochastic

supply of the risky asset. Either way, PET agents still extrapolate past prices to recover

a (noisy) signal from them.

Given the noisy information that uninformed agents extract from prices, their beliefs

in period t are given by:

EU,t[DT ] = D̃t−2 +

 σ2
u

σ2
u +

(
c̃
ã

)2
σ2

z

(1
ã

)
(Pt−1 − EU,t−1[Pt−1]) (D.25)

= D̃t−2 + κ

ã
(Pt−1 − EU,t−1[Pt−1]) (D.26)

where κ =
(

σ2
u

σ2
u+( c̃

ã)2
σ2

z

)
≤ 1 is the weight that PET agents put on the noisy signal they

extract from past prices. This shows that the extrapolation parameter θ now depends

on two components:

θ ≡ κ

ã
=

 σ2
u

σ2
u +

(
1

ϕτ̃I

)2
σ2

z


︸ ︷︷ ︸

weight

(
1 +

(
1 − ϕ

ϕ

)
τ̃U

τ̃I

)
︸ ︷︷ ︸

inference

(D.27)

where (τ̃U)−1 =
(

1
1−β2

)
σ2

u = (τ̃I)−1 + σ2
u and (τ̃I)−1 =

(
β2

1−β2

)
σ2

u. Starting from the

second component in (D.27), 1/̃a is the extrapolation parameter that would prevail if

35The assumption that prices are fully revealing in period t − 2 means that uninformed agents think
they know the exact value of ẼI,t−2[DT ] = D̃t−2, as opposed to being uncertain about it.
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σ2
z = 0 and prices were fully revealing: the more sensitive prices are to shocks, the less

strongly do PET agents need to extrapolate unexpected price changes to recover the (in

their mind unbiased) noisy signal ũt−1 − c̃
ã
(zt−1 − Z) from prices. Turning to the first

component in (D.27), κ ≤ 1 is the weight that PET agents put on the information they

extract from prices when forming their posterior beliefs. Whenever σ2
z > 0, κ < 1, and

PET agents extrapolate prices less strongly than when prices are fully revealing, and

this simply reflects the noisy nature of the signal they are able to infer from prices.

To draw comparative statics, we can substitute the expressions for τ̃I and τ̃U into

(D.27), and re-write the extrapolation parameter in terms of the primitives of the model:

θ = κ

ã
=

 1
1 +

(
1
ϕ

)2 ( β2

1−β2

)2
σ2

uσ2
z


︸ ︷︷ ︸

weight

(
1 +

(
1 − ϕ

ϕ

)
β2
)

︸ ︷︷ ︸
inference

(D.28)

From this expression, we see that the extrapolation parameter is decreasing in all sources

of noise (σ2
u and σ2

z), as this reduces the informativeness of the signal uninformed agents

extract from prices.

On the other hand, increasing the perceived information advantage (1/β2) and the

fraction of informed agents in the market (ϕ) both have two competing roles. Increasing
1/β2 (or ϕ) decreases the fully revealing extrapolation parameter 1/̃a as prices are more

sensitive to news, but it also increases the weight κ, as prices are a more informative

signal. For small enough noise, the first effect dominates, and the extrapolation param-

eter is decreasing in the informational edge, and in the fraction of informed agents in

the market. On the other hand, if there is too much noise in prices, the second effect

dominates and the comparative statics are reversed.36

36Notice that it is a more general property of learning models that the effects of learning are dampened
when noise is greater. Therefore, in this section we see that in circumstances where learning is relevant,
the comparative statics described in the main text still hold.
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